Report on Geotechnical Investigation

7A-11 Racecourse Road, 1-3 Faunce Street and 38-50 Young Street

300304375-400.5

Prepared for Waluya Pty Ltd

19 July 2024

Contact Information

Document Information

Stantec Australia Pty Ltd	Prepared for	Waluya Pty Ltd
ABN 17 007 820 322	Project Name	7A-11 Racecourse Road, 1-3
Level 2, Suite 22 22 Honeysuckle Drive		Faunce Street and 38-50 Young Street
Newcastle NSW 2300 Australia	File Reference	300304375-400.4_Report on Geotechnical
www.stantec.com Phone +61 2 4940 4100		Investigation_Racecourse Rd West Gosford_rev5.docx
Fax +61 2 4324 3251	Job Reference	300304375-400.5
	Date	19 July 2024
	Version Number	4
Author(s):		
Nucon		
Nick McDonald Graduate Geotechnical Engineer	Effective Date	19/07/2024

Approved By:

2

George Ashworth	Date Approved	19/07/2024
Geotechnics Lead – Northern NSW		

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	22/09/2023	First Issue	NM	GA
2	8/02/2023	Revision to address Council comments	NM	GA

© Stantec. Copyright in the whole and every part of this document belongs to Stantec and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Stantec.

This document is produced by Stantec solely for the benefit and use by the client in accordance with the terms of the engagement. Stantec does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Stantec is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
3	14/03/2024	Revision to address Without Prejudice meeting comments	NM	GA
4	22/04/2024	Revision to address comments for conciliation conference	NM	GA
5	19/07/2024	Updated reference to latest plans	NM	GA

© Stantec. Copyright in the whole and every part of this document belongs to Stantec and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Stantec.

This document is produced by Stantec solely for the benefit and use by the client in accordance with the terms of the engagement. Stantec does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Stantec is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introd	uction	1
	1.1	Overview	1
	1.2	Proposed Development	1
	1.3	Objectives	1
2	Deskt	op Review	2
	2.1	Previous Investigation	2
	2.2	Published Data	2
3	Site D	Description	4
4	Invest	tigation Methodology	5
	4.1	Field Investigation	5
	4.2	Laboratory Testing	6
5	Invest	tigation Findings	7
	5.1	Geological Soil & Rock Units	7
	5.2	Groundwater Monitoring	9
	5.3	Laboratory Test Results	10
6	Earth	works	13
	6.1	Overview	13
	6.2	Groundwater and Infiltration	13
	6.3	Excavations	13
	6.4	Cutting and Batters	14
	6.5	Suitability of Cut Materials for Reuse or Disposal	15
	6.6	Filling	15
	6.7	Slope Stability	16
	6.8	Acid Sulfate Soils	16
7	Found	dation Conditions & Design Recommendations	17
	7.1	Aggressivity	17
	7.2	Site Sub-Soil Classification for Earthquakes	17
	7.3	Shallow Foundation Design	17
	7.4	Deep Foundation Design	18
8	Retair	ning Structures	21
	8.1	Design Criteria	21
	8.2	Permanent Excavation Retention	21
	8.3	Retaining Wall Design Parameters	22
	8.4	Construction Recommendations	22
9	Desig	n Pavement Subgrade	23
	9.1	Design Subgrade	23
	9.2	Construction Notes	23
10	Limita	itions	25

iv

References

Appendices

- Appendix A FIGURES
- Appendix B ENGINEERING LOG SHEETS
- $\label{eq:appendix C} \textbf{LABORATORY TEST RESULTS}$
- Appendix D HILLSIDE CONSTRUCTION PRACTICE

Tables

Table 5-1	Generalised Geotechnical Units	7
Table 5-2	Summary of Borehole Details	8
Table 5-3	Summary of Subsurface Unit Depths	8
Table 5-4	Summary of Groundwater Levels	9
Table 5-5	Summary of CBR Test Results	10
Table 5-6	Summary of Shrink Swell Test Results	10
Table 5-8	Summary of Soil Aggressivity Test Results	12
Table 7-1	Geotechnical Design Parameters for High Level Footings	17
Table 7-2	Geotechnical Design Parameters for Pile Foundations	20
Table 8-1	Retaining Wall Design Parameters	22

Figures

Figure 2-1	Summary of Site Geology	3
Figure 6-1	Excavatability in Relation Defect Spacing Vs Is(50)	14

1 Introduction

1.1 Overview

This report documents the results of the geotechnical investigation undertaken by Stantec Australia Pty Ltd (Stantec) for the proposed Bus Depot located at 7A-11 Racecourse Road, 1-3 Faunce Street and 38-50 Young Street West Gosford NSW ('the site').

The geotechnical investigation has been undertaken in accordance with Stantec's proposal (Ref No. *300304375 7A-11 Racecourse Road, 5-9 Faunce Street & 36 Young Street, West Gosford*, dated 21 December 2022) and was commissioned by Waluya Pty Ltd ('the client').

This geotechnical report has been prepared to assist in the detailed civil and structural design and construction of the proposed structure. This report was undertaken in conjunction with a contamination assessment "*Detailed Site Investigation - 7A -11 Racecourse Road, 1-3 Faunce Street & 38-50 Young Street, West Gosford*" dated 6 July 2023 [1].

Stantec were supplied the following documents by the client:

- Architectural Drawings for Development Application prepared by DEM (Aust) Pty Ltd (Project ref. 4548-00, Rev. A07, dated 15 July 2024).
- Structural Drawings prepared by Triaxial Consulting Pty Ltd (Project ref. TX17790.00, Drawing No. S1.01-S6.03, Issue B, dated 18 March 2024).

1.2 Proposed Development

Based on a review of the supplied plans, the proposed development is understood to comprise the following:

- Construction of an at grade bus parking lot comprising Ninety-six (96) spaces with finished design levels for the majority of the site approximately 9.0 m Australian Height Datum (mAHD);
- > Construction of an at grade car park comprising one-hundred and thirteen (113) spaces;
- > Office administration and workshop buildings;
- > On site fuel storage and bus refuelling bowser; and
- > Construction of multiple retaining walls on the perimeter of the site with a maximum height of approximately 6.22 m on the eastern perimeter.

1.3 Objectives

This geotechnical report outlines the investigation findings, provides comments on the implication of the geotechnical conditions as well as design and construction implications comprising:

- > A description of soil conditions to a depth as necessary below natural surface level for the design of the building foundations and carpark pavements, including provision of relevant design parameters;
- Earthworks procedures and guidelines including site preparation, depth to rock and groundwater (if encountered), excavation conditions, temporary and permanent batter stability, slope stability considerations, the suitability of the site soils for use as fill, along with fill construction and compaction procedures;
- > Identification of suitable footing types & founding levels including;
 - Recommendations on bearing pressures for foundations, including end bearing and skin friction for piles;
 - Advice on footing settlements;
- > Retaining wall design parameters and recommendations; and
- > Recommendations for internal pavement design.

2 Desktop Review

2.1 **Previous Investigation**

The geotechnical investigation was undertaken in conjunction with Detailed Site Investigation (DSI) to assess the site for actual or potential contamination. The DSI scope included collection and review of historical land titles; sampling of soils from 26 test pits, 18 hand auger locations and four groundwater wells; laboratory analysis of collected samples and preparation of a report.

The typical subsurface profile encountered during the DSI comprised uncontrolled filling to maximum depth of 2.2 m, overlying residual soils and sandstone bedrock. The filling was observed across the entirety of the site, comprised mostly of silty sand and gravelly sand. Anthropogenic inclusions within fill material were observed, including bricks, terracotta clay tiles, rubber, glass, ceramic tiles, timber, metal, PVC piping, aggregates and charcoal.

Asbestos in soil contamination was identified west of the stables structure within the site. Materials in this area are preliminarily classified as Special Waste (Asbestos) General Solid Waste (non-putrescible) for the purposes of offsite disposal.

Metals, TRH and PFOS contamination of soil and groundwater was identified in exceedance of adopted Tier 1 ecological criteria but are not considered to present an unacceptable risk to site users under the proposed land-use.

2.2 Published Data

2.2.1 Soil Landscape Maps

A review of the NSW Office of Environment and Heritage, eSPADE v2.2 mapping system [2] indicates that the site is situated within the Erina soil landscape (**9131er**) comprising of moderately deep to deep podzolic soils, located on undulating to rolling rises and low hills on the Terrigal Foundation of the Narrabeen Group. Soils of this landscape are generally strongly to very strongly acidic and highly plastic.

2.2.2 Regional Geology

Reference to the New South Wales (NSW) Seamless Geology dataset accessed on NSW Governments web mapping application "Minview" [3] indicates that the site is situated within the Burralow Formation (**Tngb**) which apart of the wider Gosford Subgroup. This is known to comprise fine grained, micaceous, quartz- to quartz-lithic sandstone; interbedded with siltstone, grey shale and red-brown claystone and residual soils derived from the weathering of the parent rock.

Figure 2-1 Summary of Site Geology

2.2.3 Acid Sulfate Soils

Stantec

A review of the NSW Office of Environment and Heritage, eSPADE v2.2 mapping system [2] indicate that the site is located in an area of no known occurrences of Acid Sulfate Soils. Lands adjacent west and south-west of the site across Racecourse Road are mapped as Disturbed Terrain with potential for ASS between 0 and 1 m below ground level (mBGL).

Under the Central Coast LEP the site is mapped in a Class 5 area for ASS planning controls; in these areas development consent is required when "Works within 500 m of adjacent Class 1, 2, 3 or 4 land that is below 5 mAHD and by which the water table is likely to be lowered below 1 mAHD on adjacent Class 1, 2, 3 or 4 land."

2.2.4 Mine Subsidence

Review of the NSW Government Planning Portal 'Spatial Viewer' web application indicates the site is not located within a known Mine Subsidence District.

3 Site Description

The investigated site of the proposed development is defined as an irregular parcel of land approximately 21,400m² situated within the Central Coast Council local governments area, enveloping the following 14 contiguous lots:

7A Racecourse Rd,	Lot 74/DP810836	38 Young Street,	Lot 12/DP1100110
9 Racecourse Rd,	Lot 73/DP810836	38 Young Street,	Lot 13/DP1100206
9A-11 Racecourse Rd,	Lot 72/DP810836	38 Young Street,	Lot 14/DP1100206
9A-11 Racecourse Rd,	Lot 71/DP810836	38 Young Street,	Lot 15/DP1100216
1-3 Faunce Street,	Lot 6/DP801261	38 Young Street,	Lot 16/DP1079150
38 Young Street,	Lot 1/DP651249	50 Young Street,	Lot 18/DP1100223
38 Young Street,	Lot 11/82/DP758466	50 Young Street,	Lot 20/82/DP758466

The site is bounded by Faunce Street to the north, Young Street to the east, Racecourse Road to the west, and commercial properties to the south. Gosford Racecourse is located to the west of the site beyond Racecourse Road, with commercial/industrial and the occasional residential occupancy further to the north, east and south.

Topographically the site is situated above the Narara Creek creek line to the west, at the foot of a large, steep rise (Waterview Park nature reserve) to the east, with immediate site slopes falling moderately to the south-west. It is expected surface flows will follow this trend.

Reference to the Mecone Mosaic [4] elevation contour data, elevations across the site range from approximately 16 mAHD within the north-eastern portion of the site to 6 mAHD within the south-western corner of the site.

The site had recently been subject to an intrusive contamination assessment by Stantec, which comprised the excavation of numerous test pits across the entire site and the installation of groundwater monitoring wells. This resulted in many locations of significant anthropogenic disturbance visible from the surface. The following features were also observed at the time of investigation:

- > The site surface was generally covered by a combination of grass, gravel and concrete/asphalt associated with historical building slabs and roads. Gravels were observed to include anthropogenic materials such as brick, likely coal washery reject, and gravels were observed in-situ suggesting potential fill material.
- Some portions of the site were overgrown with long grass and woody trees or shrubs, therefore the ground surface could not be thoroughly inspected. Overgrown areas were generally associated with embankments along site boundaries and the edges of possible fill platforms.
- > Numerous buildings / structures including:
 - Double-storey residential building
 - Garage
 - Horse arena
 - Enclosed horse stables and detached shed
 - Open horse stables
- > The driveways and access roads in proximity to the buildings and structures on site were predominantly asphalt. The driveway south of the residential dwelling and cleared area in the north-east portion of the site was comprised of compacted gravels.
- > Several areas of hardstand or building foundations were observed within the southern half of the site, the largest located at the south-east portion of the site.

4 Investigation Methodology

4.1 Field Investigation

Field investigation was undertaken on the 23-24th of May 2023 and comprised drilling of four (4) boreholes within the proposed building footprint, bus parking and areas of potentially deep excavation. Site investigations were undertaken by a geotechnical engineer and comprised the following:

- > A site walkover and visual inspection by a geotechnical engineer from Stantec including site mapping and logging of significant site features.
- Drilling of four (4) boreholes (BH01, BH02, BH03 & BH04) using a track mounted drill rig fitted with 125 mm solid flight augers (SFA) and NMLC (diamond impregnated bit) coring where rock was encountered. Bores were excavated using Tungsten Carbide (TC) bit on Solid Flight Auger (SFA) augers to refusal on weathered rock where rock core techniques were utilised in BH01 & BH03. Final depth of the boreholes was measured at 8.8 m (BH01), 7.0 m (BH02), 8.4 m (BH03) & 9.2 m (BH04).
- Standard Penetration Tests (SPT) tests undertaken at regular intervals in all boreholes to assess subsurface soil strength and consistency properties.
- > Disturbed and bulk samples of soils were taken for laboratory analysis and engineering log quality control.

4.1.1 Additional Investigation

Additional fieldwork was undertaken upon request of the client to address geotechnical related matters raised in the Statement of Facts and Contentions (SOFAC). The additional field investigation was conducted on the 25th January 2024 and comprised drilling of one (1) borehole within the proposed building footprint and area of proposed deep excavation associated with the construction of a retaining wall. Site investigations were undertaken by a geotechnical engineer and comprised the following:

- Drilling of one (1) borehole (BH05) using a track mounted drill rig fitted with 125 mm solid flight augers (SFA) and NMLC (diamond impregnated bit) coring where rock was encountered. The borehole was excavated using SFA to refusal on weathered rock at 3.0 m where rock core techniques were utilised to the target depth of 15.11 m.
- Standard Penetration Tests (SPT) tests undertaken at regular intervals in all boreholes to assess subsurface soil strength and consistency properties.
- > Construction and installation of one (1) groundwater monitoring well to a depth of 14.85 m to assess groundwater levels.
- > Development of groundwater monitoring well following construction, purging a minimum of three bore volumes of water utilising a steel bailer.
- > A series of two (2) groundwater level monitoring events within the current (MW05) and previously installed (MW01-MW04) [1] groundwater monitoring wells to assess standing groundwater levels.
- > Slug testing to assess infiltration and inflow/recharge rates for the proposed excavation and associated retaining wall.

A geotechnical engineer from Stantec carried out all fieldwork including logging of subsurface profiles and collection of samples. Logging of boreholes was undertaken in accordance with AS1726 [5]. Borehole and groundwater monitoring well locations are shown on Site Plan Figures F1 and F2 attached in Appendix A. Subsurface conditions are summarised in Section 5.1 and detailed in the engineering logs together with the explanatory notes attached as Appendix B.

4.2 Laboratory Testing

Laboratory testing undertaken on samples recovered from the site comprised the following:

- > Three (3) four-day soaked California Bearing Ratio (CBR) tests on the existing site soils, including field moisture content and standard compaction testing
- > Two (2) Atterberg Limits, two (2) Linear Shrinkage, and one (1) Particle Size Distribution test to assist in soil classification.
- > Two (2) Shrink Swells Index tests to measure soil volume change over an extreme soil moisture content range.
- > Six (6) soil aggressivity tests including pH, Electrical Conductivity (EC), Resistivity, Sulphate and Chloride.
- > Point Load strength testing on numerous samples of rock core to aid rock strength classification.

All geotechnical laboratory testing was conducted at a NATA accredited construction materials testing laboratory. Aggressivity testing was undertaken at an external NATA accredited chemical testing facilities and the point load rock testing undertaken internally at Stantec's laboratory.

The results of the laboratory tests are summarised in Section 5.3 and detailed in the report sheets attached in Appendix C.

5 Investigation Findings

5.1 Geological Soil & Rock Units

The subsurface profile encountered during the investigation has been characterised into the following geotechnical units as shown below in Table 5-1, with borehole details and subsurface geotechnical unit depths summarised in Table 5-2 and Table 5-3.

Table 5-1	Generalised	Geotechnical Units	s

Origin	Unit ⁽²⁾	Description	Consistency Range / Rock Strength ¹	Moisture Condition / Rock Weathering
FILL	F1	Filling associated with previous use of the site comprising Silty / Silty Gravelly SAND and Sandy / Silty Sandy GRAVEL mixtures ranging from fine to coarse grained sand and fine to coarse angular to sub-rounded gravel components	-	D-M
RESIDUAL	R1	CL-CI ⁽²⁾ Sandy / Silty Sandy CLAY of low to medium plasticity, variable colour, fine to coarse grained sand. With occasional fine to coarse angular to sub-angular gravel inclusions	Stiff to Very Stiff	MC <pl td="" to="" ~pl<=""></pl>
	E1	SC ⁽²⁾ Clayey SAND / SAND trace clay, of fine to coarse grain size, and white-grey in colour.	Dense	D-M
EXTREMELY WEATHERED MATERIAL	E2	CL ⁽²⁾ Silty / Silty Sandy / Sandy CLAY of low to medium plasticity, predominately grey-white with some bands of red. Sand of fine to coarse grain size, trace inclusions of fine angular gravel. Grading towards weathered rock	Very Stiff to Hard	MC <pl< td=""></pl<>
	W1	SANDSTONE; fine to coarse grained, grey-white with occasional red iron staining, bedded, with minor iron-stained banding.	Very Low to Low	XW-HW
BEDROCK	W2	SANDSTONE; fine to coarse grained, grey with red/orange iron staining, bedded.	Low to Medium	MW-SW
Notes to table:	W3	SILTSTONE; dark grey, laminated & with light grey SANDSTONE lenses.	Very Low to Low	XW-HW

Notes to table:

BGL: Below Ground Level

MC: Moisture Content

- D: Dry
- M: Moist

PL: Plastic Limit

XW: Extremely Weathered

HW: Highly Weathered

DW: Distinctly Weathered

SW: Slightly Weathered

(1) Inferred from Point Load Strength Index, Standard Penetrometer Tests (SPT) and Dynamic Cone Penetrometer (DCP) tests

(2) Refer to AS 1726-2017 [5], Tables 9 & 10 for group symbols.

Table 5-2Summary of Borehole Details

Hole ID	Easting	Northing	Borehole Reduced Level (mAHD) ⁽¹⁾	Approx. Depth of Fill Materials (mBGL)	Approx Depth to Bedrock (mBGL)
BH01	344688.778	6300755.004	14.5	-	1.8
BH02	344656.961	6300713.493	10.0	0.2	6.8
BH03	344663.975	6263848.108	10.0	0.2	0.5
BH04	344656.014	6300585.766	12.0	0.3	-
BH05	344694.784	6300762.082	16.5	0.9	3.0

Notes to table:

(1) Based on available contour information and estimated to the nearest 0.5m increment

BGL: Below Ground Level

AHD: Australian Height Datum

Table 5-3Summary of Subsurface Unit Depths

Unit ID	Depth To Base of Unit (mAHD)					
Onit iD	BH01	BH02	BH03	BH04	BH05	
Approximate Surface RL mAHD ⁽¹⁾	14.50	10.00	10.00	12.00	16.50	
Unit F1	NE	9.80	9.80	11.70	15.60	
Unit R1	13.40	7.20	NE	8.20	NE	
Unit E1	NE	5.80	9.50	6.50	13.50	
Unit E2	12.70	3.20	NE	2.80 ⁽²⁾	13.80	
Unit W1	10.79	3.00 ⁽²⁾	4.80	-	12.79	
Unit W2	7.63	-	3.63	-	1.39 ⁽²⁾	
Unit W3	5.70 ⁽²⁾	-	1.74 ⁽²⁾	-	-	

Notes to table:

(1) Based on available contour information and estimated to the nearest 0.5m increment.

(2) Borehole terminated

NE: Not Encountered

Despite minimal filling being encountered during this investigation, it should be noted that filling depths on the site have been observed during the concurrent DSI [1] of depths up to 2.2 m. It is noted that the deeper filling on the site is found predominately in the southwestern and southcentral portions of the site.

No groundwater was encountered during drilling exercises at the time of fieldwork. However, standing water levels were observed in groundwater monitoring wells during several monitoring events to depths of approximately 1.3 to 6.1 mBGL (4.0 to 10.5 mAHD) across the site.

It should be appreciated considering the site topography and material types encountered, groundwater levels are expected to be impacted by prolonged periods of inclement weather and changing climatic conditions.

5.2 Groundwater Monitoring

Following installation, MW05 was developed by purging with a steel bailer and groundwater levels allowed to stabilise prior to commencement of the monitoring. Standing groundwater levels (SWL) were assessed using an oil/water interface probe. SWL's within MW05 were assessed across two (2) monitoring events (30 and 31 January 2024), while MW01-MW04 SWL's were assessed over four (4) monitoring events (31 May 2023 [1], and 25, 30 & 31 January 2024). A summary of the standing groundwater levels is provided in Table 5-4 below.

Well ID	Elevation TOC	Standing Water Level (mAHD)					
Weil ID	(mAHD)	Minimum SWL	Maximum SWL	SWL 31/01/2024			
MW01	5.92	4.58	4.58	N/E			
MW02	5.85	4.11	4.51	4.12			
MW03	11.93	9.59	9.71	9.59			
MW04	14.40	10.70	11.1	10.71			
MW05 ⁽¹⁾	16.50	10.46	10.57	10.46			

Table 5-4 Summary of Groundwater Levels

Notes to table:

mAHD: Elevation in reference to AHD.

SWL: Standing water level.

N/E: Not encountered.

(1) Constructed in BH05

In addition to groundwater monitoring, infiltration testing was undertaken on 31st January 2024. Infiltration testing comprised rising-head permeability tests undertaken in MW05 to obtain a representative hydraulic conductivity (permeability) of the subsurface material.

The riding-head permeability test comprised displacement of water from the well (i.e. the removal of a 'slug') using a steel bailer. The recharge response was measured using a wireless submersible data logger/sensor. The logger was left in the well until the groundwater levels within the wells stabilised.

Monitoring of the piezometric pressure changes were undertaken using an In-Situ Rugged Troll 100. The recorded data were analysed using Win-Situ 5 software.

The data logger was attached to the underside of the well cap via stringline and inserted into the monitoring well after bailing. The logger was programmed to record the piezometric pressures immediately following insertion into the wells.

Following the completion of the monitoring, the data was retrieved from the logger and analysed using the Hvorslev method as described by M. J. Hvorslev in Time Lag and Soil Permeability in Ground-Water Observations (1951) [6] to determine an approximate permeability range. Calculation of permeability based on the rising-head results indicated a saturated hydraulic conductivity of the site subsurface profile to be in the order of 1x10⁻⁶ m/s.

It should be noted that the tests were not isolated to target discrete soil and rock layers and as such, the above value represent the average permeability of the subsurface strata and should be considered approximate. Groundwater levels are affected by factors such as site and climatic conditions, changes in the site and surrounding environment such as construction activities and are therefore subject to change.

TOC: Top of well casing

5.3 Laboratory Test Results

5.3.1 Geotechnical

5.3.1.1 California Bearing Ratio Test Results

The previous results of the standard compaction CBR testing undertaken on representative samples of site materials, and are summarised below in Table 5-5 with the laboratory report sheets attached in Appendix C.

Table 5-5 Summary of CBR Test Results

Borehole ID	Depth (m)	Material Description	W (%)	SOMC (%)	SMDD (%)	Swell (%)	CBR (%)
BH02	0.4 – 1.3	Sandy CLAY	19.1	17.0	1.81	0.0	6.0
BH03	0.3 – 0.5	Clayey SAND, trace gravel	7.3	11.5	1.95	0.0	35.0
BH04 ⁽¹⁾	0.3 – 1.5	Sandy CLAY, with some gravel	18.6	17.5	1.85	0.0	9.0

Notes to table:

(1) Identified on construction material testing report as TP209 as a result of an administrative error.

W: Field Moisture Content

SOMC: Standard Optimum Moisture Content

SMDD: Standard Maximum Dry Density

5.3.1.2 Shrink Swell Test Results

The results of the laboratory shrink swell tests undertaken on representative clayey soils of the site and results from relevant previous investigations are summarised below in Table 5-6 with the test report sheets attached in Appendix C.

Table 5-6 Summary of Shrink Swell Test Results

Test Location	Depth (m)	Material Description	Esw (%)	Езн (%)	lss (%)
BH02	0.4 – 1.3	Sandy CLAY	-0.0	3.0	1.7
BH04 ⁽¹⁾	0.3 – 1.5	Sandy CLAY, with some gravel	-0.1	2.0	1.1

Notes to table:

Esw: Swelling Strain

E_{SH}: Shrinkage Strain

Iss Shrink Swell Index

(1) Identified on construction material testing report as TP209 as a result of an administrative error.

The results of the laboratory shrink-swell tests from the current investigation, summarised in Table 5-6, indicate that the tested natural clay materials generally range from slightly to moderately reactive.

5.3.1.3 Material Quality Test Results

The results of the laboratory Atterberg limits, linear shrinkage, and particle size distribution testing undertaken on representative materials encountered on site are summarised below in Table 5-7, with the test report sheets attached in Appendix C.

Table 5-7	Summary of Material Quality Test Results
-----------	--

Test Location	Depth (m)	Material Description	LL (%)	PL (%)	PI (%)	Linear Shrinkage (%)	Passing 2.36 mm	Passing 75 µm
BH02	0.4-1.3	Sandy CLAY	43	16	27	11.0	-	-
BH03	0.3-0.5	Clayey SAND, trace gravel	-	-	-	-	86	23
BH04 ⁽¹⁾	0.3-1.5	Sandy CLAY, with some gravel	53	19	34	14.5	-	-

Notes to table:

LL Liquid Limit

PL Plastic Limit

PI Plasticity Index

(1) Identified on construction material testing report as TP209 as a result of an administrative error.

10

The Atterberg Limits summarised in Table 5-7, indicate that the tested soil samples are of medium to high plasticity.

5.3.1.4 Point Load Testing

The results of the axial and diametric point load testing undertaken on selected rock core samples obtained from BH01, BH03 and BH05 are presented in Appendix C.

The results indicated that the sandstone formation (Unit W1) generally varied from very low to low strength, while sandstone formation (Unit W2) was generally medium strength, and interbedded sandstone & siltstone (Unit W3) formation generally very low strength.

11

Environmental Laboratory Results 5.3.2

5.3.2.1 Soil Aggressivity Results

The results of the soil aggressivity tests undertaken at the site on representative site soils encountered are summarised below in Table 5-8 with the report sheets attached in Appendix C. The samples have been assessed against AS 2159 for pile design [7] and AS 5100.5 for bridge design [8].

Table 5-8	e 5-8 Summary of Soli Aggressivity Test Results									
Hole ID	Depth (m)	Geotechnical Unit	Soil Type and (Groundwater Condition) ⁽¹⁾	рН (1:2)	EC (µS/cm)	Resistivity (Ωcm)	Sulfate (mg/kg)	Chloride (mg/kg)	AS2159 Table 6.4.2(C) – Concrete Piles	AS2159 Table 6.5.2(C) – Steel Piles
BH01	1.1 - 1.3	Unit E2	Silty Sandy CLAY (B)	5.1	49	20000	51	<10	Mildly Aggressive	Non Aggressive
BH01	1.6 – 1.7	Unit E2	Silty Sandy CLAY (B)	5.1	51	20000	47	10	Mildly Aggressive	Non Aggressive
BH02	1.5 – 1.95	Unit R1	Silty Sandy CLAY (B)	4.4	79	210000	<10	83	Moderately Aggressive	Non Aggressive
BH03	0.05 – 0.15	Unit F1	Silty Sandy GRAVEL (B)	6.2	94	11000	39	10	Non Aggressive	Non Aggressive
BH04	0.5 – 0.95	Unit R1	Sandy CLAY (B)	4.3	190	5400	260	50	Moderately Aggressive	Non Aggressive
BH04	3.0 - 3.45	Unit R1	Sandy CLAY (B)	5.5	35	28000	35	10	Mildly Aggressive	Non Aggressive

Table 5-8 Summary of Soil Aggressivity Test Results

Notes to table:

(1) Soil Condition (A) high permeability soils (e.g., sands and gravels) which are in groundwater. Soil Condition (B) for low permeability soils (e.g., silts and clays) or all soils above groundwater. Scale of aggressivity obtained from AS2159 - 2009 [7] for piles in soil. Classification is based on the most onerous result.

Non Aggressive
Mildly Aggressive
Moderately Aggressive
Severely Aggressive
Very Severely Aggressive
 Not Tested/ Not Applicable

6 Earthworks

6.1 Overview

Based on the supplied information outlining anticipated design levels in combination with existing site reduced levels at the time of fieldwork, earthworks for the proposed development are expected to comprise a combination of cutting and filling proposed across the site to regrade existing surface levels to proposed design levels. The cut on site is approximately 7 m in the north-eastern corner, with the proposed fill approximately 3.5 m in the south-west corner.

6.2 Groundwater and Infiltration

Based on the results of the groundwater monitoring tests, groundwater was encountered at an elevation range approximately between 11.1 - 9.7 mAHD in MW03-MW05. Bulk excavations are expected to extend to roughly 9 mAHD and as such minor dewatering would be required.

Given the proposed depth of excavations in conjunction with measured site groundwater levels, it would be prudent to consider the interception of groundwater for the purpose of design and construction of the slab, foundations and retaining walls. Retaining walls should consider a hydrostatic pressure of 1/3 the wall height, or in some scenarios a hydrostatic pressure the full height of the wall, subject to the potential hydrostatic conditions behind each wall.

Groundwater levels encountered during the site investigations are expected to be impacted by prolonged periods of inclement weather and changing climatic conditions. It is recommended that the design of any structures expected to interact with the groundwater table consider a nominal hydrostatic pressure as well as potential for variation of the groundwater levels.

The extent of the dewatering would vary depending on the shoring/excavation strategy selected. Considering the infiltration testing indicated that inflows within the rock layer were 1x10⁻⁶ m/s, moderate groundwater inflows are expected for excavations below groundwater table. Water-tight shoring solutions such as secant piled wall or sheet piles will minimise the requirements for dewatering, however, the groundwater inflow through the base of the excavation would be expected.

Continuous dewatering would have an impact on the local hydrogeology and could potentially result in lowering the ground water table. This should be considered in the shoring wall design and construction methodology as it can result in ground settlement and potential damage to the neighbouring structures. However, it is expected that the groundwater table would not be lowered enough to impact the ASS documented as being located in the low-lying estuarine channel to the west of the site.

6.3 Excavations

Assessment of rock excavation conditions has been undertaken to provide an indication of excavation techniques required to achieve the foundation levels of the proposed structure. The assessment has been carried out based on rock strength and defect characteristics.

It should be noted a general assessment of rock mass excavatability is an indication only and is influenced by a number of factors such as:

- Excavation production rate and economic implications. For example, rock could be excavated using toothed bucket however with lower production rate compared to ripper attachment.
- > Machine size and equipment used (ripper, bucket etc).
- > Stability and traction of the machine during the excavation.
- Intact rock characteristics such as type, strength, weathering, density, abrasiveness and rock mass properties such as joint structure and orientation, defect spacing and seams.
- > Presence of groundwater.

Generalised excavation conditions in weathered rock excavations have been carried out using methodologies outlined by Pettifer and Fookes (1994) [9], which is based on the rock point load strength and defect spacing and is summarised in Figure 6-1.

Figure 6-1 Excavatability in Relation Defect Spacing Vs Is(50)

Based on Figure 6-1, any bulk excavations within the very low to low strength sandstone / siltstone bedrock are expected to be within the "easy digging" range, and thus will be able to be readily undertaken using a medium to large (25 tonne and above) excavator. Where deeper bulk excavations encounter low to medium strength sandstone, the excavatability is categorised as "hard digging" and "easy ripping". This can be readily undertaken with the aforementioned machinery (backhoe or face shovel attachment) or alternatively through the use of a D8 Bulldozer. It should be noted that localised higher strength rock may be encountered during excavation. This should be considered when selected drilling and excavation equipment.

6.4 Cutting and Batters

Excavations or trenches in the residual soils (stiff or better) would be expected to stand close to vertical in the short-term, up to maximum height of 1.5 m and subject to geotechnical assessment by an experienced geotechnical consultant. Where personnel are to enter excavations, options for short-term excavations include benching or battering back of the excavations at 1H:1V or the support of excavations within the residual soil. Permanent batters in this material should be battered at 3H:1V or flatter and protected against erosion by vegetation. Where there is limited space to construct batters, the excavations will require lateral support.

Safe construction practices should be followed such as ensuring stockpiles / vehicles / plant are not placed adjacent the top of excavations, with a minimum clear horizontal distance equivalent to the depth of excavation.

6.5 Suitability of Cut Materials for Reuse or Disposal

6.5.1 Requirements for Waste Classification

Classification of the site in-situ material in accordance with the EPA guidelines "*Waste Classification Guidelines, Part 1: Classifying Waste*" [10] will be required prior to the removal off-site.

It is noted that a surface mantle of uncontrolled filling is present in sections across the site arising from the demolition of previous structures. Any existing uncontrolled filling will be reconditioned and re-used on site where appropriate, to allow for surplus of natural material which can be exported off site as VENM.

6.5.2 Requirements for Reuse in Reconstruction

Fill materials are expected to comprise of the following:

- > Site won residual clays: Generally, soils excavated on site with the exception of topsoil and high silt content soils are considered suitable for reuse as engineering fill.
- Site won weathered rock: Generally, site won rock would comprise predominantly of weathered sandstone, and would be suitable for re-use. Rock is expected to be present at a design foundation level within the areas of cut. The weathered rock is considered suitable as general fill to support foundations or subgrade fill for road pavements.

6.6 Filling

Fill to be subject to structural loading must be placed and compacted in accordance with AS 3798-2007 *Guidelines on Excavation for Commercial and Residential Structures* [11]. The following procedure should be adopted for construction of filling:

- Filling should be placed on stripped surfaces which are free of uncontrolled fill, topsoil or other deleterious material. Stripped surfaces should be inspected by an experienced geotechnical consultant prior to fill placement.
- > The fill material must be free of vegetation such as tree stumps, roots, root fibres or other organic matter.
- > Fill should not comprise material with particle sizes of greater than 100 mm or 2/3 of the compacted layer thickness.
- > Where fill is to be placed on slopes steeper than 8H:1V, benching will be required. This should comprise horizontal benches with adequate width (minimum 1.0m) to accommodate the nominated compaction equipment.
- Placement of fill in uniform horizontal layers with compaction of each layer to a minimum dry density ratio of 95% standard Compaction (AS 1289-5.5.1) at moisture contents in the order of 85-115% of SOMC or ±2% but generally as close to SOMC as practical. Over compaction should be avoided.
- > Placement of fill in exceedance of 2m in height is recommended to have compaction of each uniform layer to a minimum dry density ratio of 98% Standard Compaction (AS 1289-5.5.1).
- > Within the road alignment, subgrade formation should be in accordance with Section 9.2.1 and the moisture specification will need to be maintain at -2 to 0% of OMC.
- > Where vibratory equipment is proposed, the potential for vibration transfer to neighbouring structures and potential damage should be considered by the contractor.

6.7 Slope Stability

It is noted that the site does not meet the requirements to be identified as having landslip potential in accordance with Chapter 3.7 of Central Coast Council's Development Control Plan (DCP) [12]. However, due to the presence of steeper site slopes and depth of proposed excavations along the north and eastern boundaries, it is recommended that slope stability considerations factor into the design and construction methodology. At a minimum, it is expected that the following be implemented:

- > Footings to be founded below uncontrolled filling in competent strata (i.e. residual clays / bedrock).
- > Sufficient drainage with a suitable discharge point be incorporated into the proposed infrastructure to prevent surface water from infiltrating into the ground.
- > Cuttings are supported by retaining walls.
- Retaining walls are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill.

6.8 Acid Sulfate Soils

A preliminary Acid Sulfate Soils (ASS) assessment has been undertaken to assess the presence of ASS. The desktop assessment comprised a review of available published geological data and Acid Sulfate Soils (ASS) risk maps. Any visual or olfactory observations during the subsurface investigation were also recorded.

The desktop review and investigation has revealed the following.

- > The site soils generally comprise residual and extremely weathered sand / clay, and weathered rock.
- > A review of the NSW Office of Environment and Heritage, eSPADE v2.2 mapping system [2] indicate that the site is located in an area of no known occurrences of Acid Sulfate Soils. Lands adjacent west and south-west of the site across Racecourse Road are mapped as Disturbed Terrain with potential for ASS between 0 and 1 m below ground level (mBGL).
- > Under the Central Coast LEP the site is mapped in a Class 5 area for ASS planning controls; in these areas development consent is required when "Works within 500 m of adjacent Class 1, 2, 3 or 4 land that is below 5 mAHD and by which the water table is likely to be lowered below 1 mAHD on adjacent Class 1, 2, 3 or 4 land."
- Site elevations range from approximately 16 mAHD within the north-eastern portion of the site to 6 mAHD within the south-western corner of the site.
- > No ASS indicators were observed during the subsurface investigations.

Based on the above, it is expected that acid sulfate soils will not be encountered at the site and as such, an Acid Sulfate Soil Management Plan (ASSMP) would not be required for the proposed works.

Further commentary on the impacts of site groundwater on the high-risk ASS areas to the west of the site is documented by Stantec's contaminated lands team in *Detailed Site Investigation* report [1] (refer to Section 10.2.3).

7 Foundation Conditions & Design Recommendations

The design parameters and recommendations that are presented in the following sections should be used as guidance for the design. The detailed design of the foundations should consider the appropriate structural loads against serviceability and ultimate limit state criteria.

7.1 Aggressivity

Based on the summary of analytical results presented in Section 5.3.2 on the basis of Chlorides, Sulfates, pH and resistivity, it was found that the residual, and extremely weathered soils samples were predominately mildly to moderately aggressive towards potential buried concrete, however, the analysed materials were non-aggressive to buried steel elements based on exposure classification.

Soils can be generally categorised as exposure classification B2 when compared against AS5100.5-2017 [8].

7.2 Site Sub-Soil Classification for Earthquakes

Based on the encountered subsurface conditions in conjunction with the proposed earthworks for the site, it is expected that two subsoil classifications are required for the site.

For the purposes of earthquake design, the site has been given the following site sub-soil classifications in accordance with AS1170.4 - 2007 [13].

- > Class B_e Rock for the central portion of the site where cut is proposed; and
- > Class C_e Shallow Soil Site for the northern and eastern portion of the site where fill is proposed.

The hazard factor (Z) for Gosford, NSW is 0.09 as seen also in AS1170.4 – 2007 [13].

7.3 Shallow Foundation Design

Shallow footings designed in accordance with engineering principles and founded in R1 strata (stiff or better clay) and below uncontrolled fill or other deleterious material), may be proportioned on an allowable bearing capacity of 150kPa. Shallow foundations should be embedded a minimum of 0.5m in R1 strata.

Based on the supplied architectural plans and encountered founding conditions, it is anticipated that shallow foundations may be used to support all structural elements. As such, recommended design parameters are presented below in Table 7-1.

Allowable Bearing Pressure (kPa)	Modulus of Subgrade Reaction (ks) ^(1,2,3) (kPa/m)
150	20,000 - 24,000
400	50,000 - 70,000
400	50,000 - 60,000
	Pressure (kPa) 150 400

Table 7-1 Geotechnical Design Parameters for High Level Footings

Notes:

(1) Vesic empirical formula used to estimate modulus of subgrade reaction (ks).

(2) Preliminary ks provided, exact values are dependent on the footing size and footing stiffness.

(3) ks provided based on strip footing width and spring spacing's of 1.0 m

It should be noted that the modulus of subgrade reaction (ks) value is preliminary as it is based on elastic formulas, this value should be corrected in detailed design considering the stiffness of proposed footings. Additionally, springs should be capped to soil yielding pressure to prevent inaccurate results during finite element modelling.

All footings should be founded below any uncontrolled fill or deleterious materials. All footings for the same structure should be founded on strata of similar stiffness and reactivity to minimise the risk of differential movements.

All footings excavations should be inspected prior to installation of structural steel by a suitably experienced engineer or geotechnical consultant to confirm that the founding conditions are as described in this report. All loose material should be cleared from the footing excavations before concrete is poured.

It is recommended that detailed modelling be undertaken during structural design to assess the feasibility of high-level foundations, to analyse expected settlements and soil-structure interaction.

7.4 Deep Foundation Design

Where shallow foundations are found to be unsuitable for support of the loads, deep foundations would be a viable option. Bored concrete pile foundations embedded into the underlying sedimentary bedrock would be appropriate to support the proposed site structures.

General design parameters and recommendations are presented in the following sections and should be used as guidance for the design. The detailed design of the foundations should consider the appropriate structural loads against serviceability and ultimate limit state criteria.

7.4.1 Design Criteria

Design of the proposed structure foundations should be undertaken in accordance with the requirements of the following:

- > AS 2159 (2009) Piling Design & Installation [7]
- > AS 5100 (2017) Bridge Design Set (Parts) [14]
- > Other relevant Australian and international standards
- > Engineering principals

The foundation detailed design should include assessments of both strength and serviceability limit states. General design parameters are presented in the following sections and should be used as guidance for the design.

7.4.2 Foundation Material

Based on the subsurface profile encountered in the boreholes drilled, the subsurface profile across the founding conditions is expected to generally comprise:

- > Unit R1: Stiff to very stiff residual silty clays are present below the surficial filling.
- > Unit E1: Dense residual clayey sands containing sandstone fragments grading towards extremely weathered rock.
- > Unit E2: Very stiff to hard residual clays containing siltstone / sandstone fragments and grading towards extremely weathered rock.
- > Unit W: Sedimentary bedrock of Gosford Subgroup formation is present from below Units E1 / E2 and comprises:
 - Unit W1: Very low to low strength interbedded sandstone and siltstone with defect spacing of greater than 60mm is present below E1 to approximately 4.8 mAHD. This bedrock corresponds approximately to Class V Sandstone as per as P.J.N Pells [15].
 - Unit W2: Low to medium strength sandstone with defect spacing of generally greater than 60mm is present below Unit W1 to the depths of approximately 3.6 mAHD. This bedrock corresponds approximately to Class IV Sandstone as per as P.J.N Pells [15].
 - Unit W3: Very low to low strength siltstone with defect spacing of generally greater than 60mm is present below Units W1 & W2 to the depths of investigation. This bedrock corresponds approximately to Class IV Shale as per as P.J.N Pells [15].

7.4.3 Bored Piles

7.4.3.1 Bored Pile Design

For the pile foundations, AS 2159-2009 [7] requires that the ultimate design geotechnical strength ($R_{d,g}$) is not less than the design action effect (E_d). The design geotechnical strength is calculated as the ultimate geotechnical strength ($R_{d,ug}$) multiplied by a geotechnical strength reduction factor (ϕ_g).

The value of the geotechnical strength reduction factor is influenced by the following factors:

- > ϕ_{gb} Basic geotechnical strength reduction factor, which is influenced by an assessment of the various risk factors relating to the site, design methodology and the method of pile instillation.
- $> \phi_{tf} Intrinsic testing factor based on the type of pile testing to be undertaken; and$
- > K Testing benefit factor dependant on the percentage of piles to be tested.

The assessment of individual risk ratings for risk factors as set out in Table 4.3.2 (A) of AS 2159-2009 [7] will need to be undertaken by the designer of the foundations. However, to assist in the design of foundations, an assessment of the average risk rating has been undertaken based on the following factors and assumptions:

- > A level and quality of the geotechnical investigation that has been undertaken to date which includes insitu testing including boreholes, rock coring and laboratory assessment of the rock strength properties;
- > No pile load testing will be undertaken;
- > Similar experience with the design of foundations with socket into sedimentary bedrock; and
- > A competent and locally experienced piling contractor to install the piles.

Based on the assessment of the above factors and assumptions, an Average Risk Rating (ARR) for the design of the foundations into the weathered bedrock of 2.8 could be adopted.

Based on Table 4.3.2 (C) of AS 2159-2009 [7], an ARR of 2.5 to 3.0 is defined as moderate risk. The basic geotechnical strength reduction factor (ϕ_g) for single isolated piles (low redundancy system) founded into the weathered bedrock profile within the site is assessed to be 0.52. This reduction factor should also be applied for ultimate limit state design of the shallow foundations.

An increase in the geotechnical strength reduction factor could be adopted by adopting the following procedures:

- > Inspection and certification of pile sockets by a suitably experienced geotechnical engineer.
- > Pile testing regime depending on the type and extent of the testing. Dynamic testing of bored piles is not typically undertaken due the magnitude of column loads. Therefore, an increase on the basic geotechnical strength reduction factor by dynamic testing is not recommended. Osterberg, static or statnamic tests could be utilised to increase the geotechnical reduction factor.

For all piles where the basic geotechnical strength reduction factor is greater than 0.40, AS2159-2009 [7] requires the integrity of the pile shaft to be assessed by testing and inspection.

Consideration should be given towards Section 4.4.3 of AS2159-2009 [7] when considering the design of pile groups and that the ultimate design geotechnical strength ($R_{d,ug}$) of a group of piles in compression or uplift should take into account the effects of pile group action. It is recommended that the ultimate geotechnical strength shall be taken as the lesser of:

- (a) The sum of the ultimate geotechnical strength capacities of the individual piles in the group; and
- (b) The design ultimate geotechnical strength of an equivalent rigid block containing the piles and the soil between them.

Spacing of piles within a pile group should generally be not be less than 2.5 times the pile diameters unless a comprehensive assessment of group interaction is undertaken and as a result it's confirmed this does not adversely affect the overall pile group.

For piles subject to uplift loads, the geotechnical design strength shall be modified by multiplying by a factor of 0.7 in addition to the geotechnical strength reduction factor. A cone pull-out mode of failure shall be considered where appropriate for single piles.

With regards to serviceability limit state, the design of rock sockets (in compression) shall address the vertical slip displacements between concrete shaft and rock. In addition, the side shear resistance is coupled with the end bearing load displacement behaviour in order to predict load displacement behaviour of the complete socket.

7.4.3.2 Bored Pile Parameters

Interpretation of the foundation conditions has been undertaken and presented in Section 7.4.2 based on the subsurface conditions encountered. The following section details design parameters for bored concrete piles and provides associated construction recommendations.

Design values presented in Table 7-2 assume:

- > Pile foundations comprise centrally loaded piles suitably embedded into bedrock.
- > Piles are constructed using appropriate construction practice.
- Serviceability limit state design is undertaken for the foundation to consider the settlement of the various foundation types and structural tolerances.

Inspection of the foundation conditions and pile excavations shall be undertaken by experienced geotechnical engineer to confirm the founding conditions and above values. All foundation excavations should be kept free of fall-ins and water ponding.

The proposed piling methodology must consider equipment sufficient for drilling into the described subsurface conditions and account for locally higher strength rock.

Table 7-2	Geolecinical Design Farameters for File Foundations							
Description	Inferred Rock Class ¹	Design UCS (MPa) ⁵	Serviceability End Bearing Pressure (MPa) ⁴	Ultimate ⁶ End Bearing (MPa) ³	Ultimate ⁶ Shaft Adhesion (Compression) within Iayer (kPa) ²	Rock Mass Elastic Modulus (MPa)		
Unit W1	Class V	2.0	1.0	4	150	100		
Unit W2	Class IV	7.0	3.0	10	600	500		
Unit W3	Class IV	2.0	1.0	3	150	200		

 Table 7-2
 Geotechnical Design Parameters for Pile Foundations

Notes:

1- The inferred rock classifications are based on P.J.N Pells et al [15].

2- The shaft adhesion value is based on clean socket roughness of R2 [15] or better which must comprise grooves of depth 1-4mm, width greater than 2mm at spacing 50mm to 200mm.

3- At ultimate bearing pressure, large settlements greater than 5% of the minimum foundation dimensions are expected.

4- Serviceability bearing pressure is expected to cause settlement of <1% of footing dimension for foundations embedded in weathered rock.

5- Design UCS values based on interpretation of $I_{s(50)}$ and representative rock UCS values based on an assumed correlation factor of 20.

6- Ultimate loads shall be reduced by a Basic geotechnical strength reduction factor of 0.52 to obtain allowable pile loads.

The above design parameters are subject to inspection of the foundation conditions by experienced geotechnical engineer to confirm the founding conditions. All foundation excavations should be kept free of cave-ins and water.

An estimation of the required pile sockets and expected settlement estimation should be undertaken as part of the detail design of the piles.

8 Retaining Structures

8.1 Design Criteria

This section outlines design criteria and parameters for the purpose of retaining structures design. The following design criteria should be adopted for the design of the retaining structures and ground anchors:

- > AS 4678 (2002) Earth Retaining Structures [7];
- > AS 3798 (2007) Guideline on Earthworks for Commercial and Residential Developments [11]; and
- > An accepted industry practice for global stability factors of safety (FOS) for slopes of 1.5 for long-term conditions and 1.3 for short term construction conditions.

For a simplified or preliminary design, a triangular earth-pressure distribution could be adopted. During detailed design, the designer should select earth pressure coefficients based on the specific geotechnical and geometrical situation under consideration. The retaining walls design should comprise an assessment of stability checks (internal, external, global) where applicable while the ground anchor design should comprise an assessment of pull-out capacity.

A geotechnical reduction factor (ϕ_g) of 0.5 is recommended to be applied to the estimated ultimate geotechnical strength (not parameters) for ultimate limit state design calculations.

8.2 Permanent Excavation Retention

The subsurface profile to be retained by the shoring structure is generally anticipated to comprise:

- > Residual clays overlying weathered rock within the north and eastern borders of the site.
- Structural fill overlying residual clays in areas in the south-western corner of the site where filling may be required to reach design level.

It should be noted the above conditions are inferred from the discrete borehole locations and variation of the subsurface conditions should be considered in the design.

Soldier piles with shotcrete panel could be utilised for the shoring system, however, considering the presence of groundwater within the retained height of the proposed retaining structure, inflow into the excavation would be likely. To avoid this, contiguous or secant piled walls could be utilised. Given the presence of shallow bedrock within the excavation levels, it is likely that sheet piles would be infeasible.

Regardless of the shoring wall type selection, the deflection of the shoring wall must be considered during the design to prevent damage to the neighbouring structures. The design should also incorporate surcharge loading from the road and neighbouring structures as well as earth and groundwater pressures on the wall.

Given the retaining walls are expected to be up to 7m high in some sections of the site, it is likely that the walls will need to be permanently laterally restrained to avoid excessive lateral deflections. These lateral restraints would likely comprise ground anchors, however it is expected that the restraint type would be selected and designed during the detailed design of the retaining walls.

It should be noted that where the lateral restraints extend beyond the lot boundary, landowners' consent would be required.

8.3 Retaining Wall Design Parameters

It is recommended to calculate the lateral earth pressure coefficient values based on the wall geometry, type and backfill/ground surface slopes using the values provided in the following table. The designer should reference to the requirements of AS 4678 (2002) – Earth Retaining Structures [7] for the selection of appropriate groundwater level for the design purpose. It should be noted groundwater was encountered in varying depths across the site, and levels can fluctuate with seasonal variations in climate.

Recommended design parameters for retaining walls and ground anchors are presented below in below in Table 8-1.

Parameter	Unit R1 / Structural Fill ⁽¹⁾	E1	E2	Unit W1 / SANDSTONE	Unit W2 / SANDSTONE	Unit W3 / SILTSTONE
Drained Friction Angle (ϕ')	26°	40°	28°	28° ⁽²⁾	33° ⁽²⁾	21° ⁽²⁾
Drained Cohesion (c')	5kPa	1 kPa	10 kPa	80 kPa	380 kPa	60 kPa
Bulk unit weight (kN/m ³)	18	20	20	22	22	22
At-Rest Earth Pressure Coefficient (K ₀)	0.56	0.36	0.53	0.53	0.46	0.64
Active Earth Pressure Coefficient (K _A)	0.39	0.22	0.36	0.36	0.29	0.47
Passive Earth Pressure Coefficient (K _P)	2.56	4.60	2.77	2.77	3.39	2.1

Table 8-1 Retaining Wall Design Parameters

Notes to table:

Assumes structural fill is of similar material to existing site clays and compacted in accordance with AS 3798-2007 [11].
 Please note that parameters provided in Table 8-1 are based for Rankine Theory for earth pressures. This theory is typically only applicable to soils and not rock mass. However, it is understood retaining wall design is sometimes undertaken by idealising a rock mass using soil parameters. As such, the parameters for the extremely weathered rock have been calculated using known correlations and relationships between rock mass and soil profiles.

8.4 Construction Recommendations

- Retaining wall backfill should comprise granular free-draining material with appropriate separation geofabric placed between the wall and granular backfill;
- > All foundations should be founded on similar strata to limit the effects of differential settlement or detailed analysis should be carried out to confirm expected movements are within design limits;
- Subsurface drainage lines should be placed behind the permanent and temporary (depending on the type) retaining wall, to direct seepage to appropriate points of discharge. Subsurface lines should be installed with consideration of maintenance and flush-out points;
- Additional surcharge loading from adjoining structures and roads should be taken into consideration when designing retaining walls; and
- > Retaining wall foundations should be inspected by experienced geotechnical engineer.

NA: Not Applicable

Pavement subgrade assessment has been undertaken based on the findings of the geotechnical investigation and Central Coast Council (CCC) requirements. The following guidelines should be adopted for the design of the internal roads:

- Subgrade evaluation has been performed in accordance with Austroads AGPT02-17 Guide to Pavement Technology, Part 2: Pavement Structural Design [16]; and
- > Cement and Concrete Association of Australia (C&CAA) (T51) Guide to Residential Streets and Paths [17].

9.1 Design Subgrade

Stantec

Based on the supplied limited architectural plans, cut and fill depths to pavements could be estimated based on the interpolated levels of the bore locations. Subgrade conditions along the proposed internal roads, car/bus parking and areas of concrete hardstand are seen to generally comprise a mixture of residual sandy / silty sandy clays and subgrade fill to form proposed design subgrade levels.

Any general fill subgrade design CBR would be dependent on the material utilised. The results of the CBR tests previously undertaken on potential subgrade material indicate that the residual sandy clay soils encountered produced CBR values of 6 to 9%, while the extremely weathered material to weathered rock encountered produced CBR values of 35%.

With reference to above, a design CBR of 5% should be adopted for design.

9.2 Construction Notes

9.2.1 Subgrade Preparation

Where construction of a new pavement is proposed, subgrade preparation should be in general accordance with the relevant council construction specifications and the following procedures.

- Excavation to design subgrade level, with the stockpiling of the excavated material for reuse as filling (if acceptable) following the reconditioning and removal of organics and oversized material (if present).
 Material to be removed offsite for disposal or recycling where not required or not acceptable as fill. Where material is to be removed offsite it will require classification in accordance with relevant EPA guidelines.
- > Excavation of loose and soft natural soils, and elimination of abrupt changes between subgrade conditions i.e. cohesive soils (clays) and granular soils (sands gravel).
- > Fill material to be used as subgrade shall conform to the appropriate specifications as detailed in this report and Council specifications.
- Static proof-rolling of the exposed subgrade using a heavy (minimum 10 tonne) roller under the direction of an experienced geotechnical consultant.
- > Loose or yielding areas should be excavated and replaced with compacted select fill or suitable subgrade replacement comprising of material of similar consistency to the subgrade.
- > Where filling or subgrade replacement is required, the materials employed should be free of organics or other deleterious material and could compromise the existing site-won soils. For general subgrade filling the material should have a soaked CBR ≥ 3%.
- Compaction of the subgrade, filling or select should be to a minimum 100% of SMDD (or 70% Density Index for non-cohesive materials) in layers of not greater than 250mm loose thickness. Moisture contents should be within 70% to 90% of SOMC.

Following satisfactory preparation of the subgrade, the pavement should be placed in accordance with the requirements of the appropriate section of this report, depending on the proposed pavement type.

9.2.2 Pavement Drainage

The moisture regime associated with a pavement has a significant influence on the performance of the pavement since the stiffness/strength of the pavement materials and subgrade is dependent on the moisture content of the materials. Accordingly, to protect the pavement materials and subgrade from wetting up and softening, particular care would be required to provide a waterproof seal for the pavement materials and adequate surface and sub-surface drainage of the pavement and adjacent area.

It is suggested that an intra-pavement drain should be provided at the interface between any sections of variable pavements, and where new pavements join to existing pavements. Intra-pavement subsoil drains should be in accordance with RMS QA Specification R37 [18] or equivalent and should penetrate to the subgrade or to the base of any replaced subgrade material.

9.2.3 Subsoil Drainage

It is recommended that subsoil drainage be installed at subgrade level along both sides of constructed pavements where the road is in cut, to intercept any subsurface flows. Detailing of subsoil drainage should be in accordance with Austroads 2017.

The subgrade should be constructed with sufficient cross fall (normally 3%) to assist with any moisture entering the pavement not becoming trapped. The drains should be located below or behind the kerb to intercept any moisture ingress from outside and within the road alignment. Where there is no kerb or gutter the subsoil drain should be placed at the edge of the pavement formation. Subsoil drains will require flushout points and regular maintenance to ensure their correct operation.

Attention to detail in drainage design and construction is essential for optimum performance. Expensive drainage systems can be blocked or otherwise prevented from operating by inappropriate construction procedures or drainage design. Poor performance of a drainage system can, in turn result in major deficiencies in pavement performance. It is acknowledged that provision of adequate surface and subsoil drainage in low-lying areas can be difficult; however, the provision of adequate pavement drainage is essential to performance. In these circumstances, the selection, construction and maintenance of appropriate drainage mechanisms is essential.

The suitability of subsoil drainage systems is dependent on the ability to adequately drain the pavement. Where there is insufficient fall to allow drainage, other pavement drainage measures such as drainage blankets and high permeability non-moisture sensitive pavement materials should be considered. The pavement design provided assumes drained pavement conditions.

The selection of appropriate construction materials that are insensitive to moisture change is essential in areas subject to periodic inundation and/or wet ground conditions.

9.2.4 Pavement Interface and Tie-in

It is recommended that where new pavement sections abut existing sections, the pavement should have a vertical construction joint to match the existing section. It should be noted that when variable pavements are abutted then the potential for localised failure is greater. Care should be exercised in the placement and compaction of the subgrade and pavements in this area to maximise the performance of the pavement.

Consideration should also be given to sealing any cracks that may develop between existing and new pavements, benching to tie in pavements and the use of a strain relieving membranes at the interface may be appropriate. The need for an intra-pavement drain can be assessed at the time of construction.

9.2.5 Construction Inspections

The subgrade will require inspection by an experienced geotechnical consultant after boxing out or filling to design subgrade level. The purpose of inspections is to confirm design parameters, assess the suitability of the subgrade to support the pavement and delineate areas which may require subgrade replacement / select and areas requiring remedial treatment prior to rehabilitation.

9.2.6 References

All works and materials used in construction should be designed and constructed in accordance with Council Specifications or as specified in this report. Where discrepancies may occur, clarification should be sought from Council.

Earthworks and testing should generally be undertaken in accordance with AS 3798-2007 Guidelines on Earthworks for Commercial and Residential Developments [11] where not otherwise specified.

10 Limitations

Stantec have performed investigation and consulting services for this project in general accordance with current professional and industry standards. The extent of testing was limited to discrete test locations and variations in ground conditions can occur between test locations that cannot be inferred or predicted.

A geotechnical consultant or qualified engineer shall provide inspections during construction to confirm assumed conditions in this assessment. If subsurface conditions encountered during construction differ from those given in this report, further advice shall be sought without delay.

Stantec, or any other reputable consultant, cannot provide unqualified warranties nor does it assume any liability for the site conditions not observed or accessible during the investigations. Site conditions may also change subsequent to the investigations and assessment due to ongoing use.

This report and associated documentation were undertaken for the specific purpose described in the report and shall not be relied on for other purposes. This report was prepared solely for the use by Waluya Pty Ltd and any reliance assumed by other parties on this report shall be at such parties' own risk.

References

- [1] Stantec Australia Pty Ltd, "Detailed Site Investigation 7A -11 Racecourse Road, 1-3 Faunce Street & 38-50 Young Street, West Gosford," Stantec Australia Pty Ltd, July 2023.
- [2] NSW office of Environment and Heritage, "eSPADE v2.0," 2016.
- [3] NSW Department of Planning, Industry & Environment, "MinView," 2019. [Online].
- [4] Mecone Group Pty Ltd, "Mecone MOSAIC v2.0.9," 2023. [Online]. Available: https://meconemosaic.au/?coords=%5B%5B-33.42649283398901%2C151.32355008079912%5D%5D. [Accessed July 2023].
- [5] Australian Standard AS1726-2017, Geotechnical Site Investigations, Standards Australia, 2017.
- [6] M. J. Horslev, "Time Lag and Soil Permeability in Groundwater Observations," 1951.
- [7] Australian Standard AS2159-2009, "Piling Design & Installation," Standards Australia, 2009.
- [8] AS 5100.5:2017, "Bridge Design Part 5: Concrete," Standards Australia, 2017.
- [9] G. S. Pettifer and P. G. Fookes, "A Revision of the Graphical Method for Assessing the Excavatibility of Rock," *Quarterly Journal of Engineering Geology and Hydrogeology*, vol. 27, pp. 145-164, May 1994.
- [10] NSW Department of Environment and Climate Change (DECC), "Waste Classification Guidelines, Part 1 - Classifying Waste," Department of Environment and Climate Change NSW, December 2009.
- [11] Australian Standard AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Structures," Standards Australia, 2007.
- [12] Central Coast Council, "Development Control Plan Chapter 3.7: Geotechnical Requirements for Development," Central Coast Council, 2022.
- [13] Australian Standard AS1170.4, "Earthquake Actions in Australia," Standards Australia, 2007.
- [14] Australian Standard AS5100-2017, "Bridge Design Set," Standards Australia, 2017.
- [15] P. J. Pells, G. Mostyn and B. F. Walker, "Foundations on Sandstone and Shale in the Sydney Region," Australian Geomechanics, Dec 1998.
- [16] Austroads AGPT02-17, "Guide to Pavement Technology Part 2: Pavement Structural Design," Austroads Ltd, 2017.
- [17] Cement and Concrete Assosciation of Australia, C&CAA T51 Guide to Residential Streets and Paths, 2004.
- [18] RMS QA Specification R37 (Ed 4 Rev 1), "Intra-pavement Drains," Roads and Maritime Services, June 2011.

APPENDIX

MCDONALD, NICK

2:20 PM BY

F PI OTTED: 8 Feb

NOTES: Image underlay adapted from nearmaps aerial imagery (June 2023.

LEGEND:

Approx. borehole locations and numbers from current investigation.

Approx. groundwater monitoring well locations - Detailed Site Investigation (ref. 300304375_DSI_R002, July 2023)

Indicative site boundary.

MW01 MW02			BH04	
0 10 20m SCALE 1:600 @A3				CALE _
Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.	Stantec Australia Pty Ltd ABN 17 007 820 322 Level 2 Suite 202, 22 Honeysuckle Drive Newcastle, NSW 2300 Tel: 02 4965 4555 Fax: 02 4965 4666 Web: www.stantec.com	Drawn Dat NM 6/02/202 Checked Dat Designed Dat Verified Date Approved	e Project Geotechnical Investigation e Racecourse Rd Bus Depot	Status PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES Project Number Scale 300304375-400 1:600 Figure Number Revision F1 02
				1199

Prove de la construcción de la c	
retainer. Stantec Limited does not and shall not assume any responsibility or liability and the stante 2 Suite 202, 22 Honeysuckle Drive	Itus PRELIMINARY DT TO BE USED FOR CONSTRUCTION PURPOSES oject Number 300304375-400 F2 Revision 02 1200

APPENDIX

ENGINEERING LOG SHEETS

Client: Waluya Pty Ltd Project: Geotechnical Investigation								Hole No				
ocation: Racecourse Rd, West Gosford NSW					est Gosfor	d NS	W		Job No: 300304375-400.1	Sheet: 1 of		
				Site Plan					Angle from Horizontal: 90°			e Elevation:
				nza MI2					Mounting: Track		Driller:	-
	ing D Star				Date Com	oloto	d. 5/23	123	Logged By: NM			ctor: Stratacore Drilling P/ ed By: TB
	Drilling	ieu.	5/25	Sampling &		Jiele	u. J/2J	/23	Material Description	<u> </u>	JIECK	su by. 1b
Method	Resistance	Casing	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
2	Re				150 mm 3 6 9 12			Clas	defects and structure	20	8-	RESIDUAL SOIL
			t Encountered	D 0.30 - 0.50 m	222 	- - - - - - - -			Sitty Sandy CLAY; low to medium plasticity, mottled red, yellow & white, fine to medium grained sand	M (≈ PL) - M (<pl)< td=""><td>VSt - H</td><td></td></pl)<>	VSt - H	
		— на —	Groundwater Not Encountered	D 1.10 - 1.30 m		1.0 -			1.10m			EXTREMELY WEATHERED
				SPT 1.50 - 1.78 m 14, 6/130mm N*=R D 1.60 - 1.70 m		- 1.5 - -				M (<pl)< td=""><td>н</td><td>1.50 m: SPT Recovery: 0.28 m</td></pl)<>	н	1.50 m: SPT Recovery: 0.28 m
						- - 2.0		<u> </u>	1.80m			WEATHERED ROCK
						- - - 2.5 - -			Continued as Cored Drill Hole			
						- 3.0 - -						
						- 3.5 - -						
						- - -						
						- 4.5 - - -						
METHOD PENETRATION EX Excavator bucket VE Very Easy (No Resistance) R Ripper E Easy PT Push tube F Firm SON Sonic drilling VH Very Hard (Refusal) AH Air hammer VH Very Hard (Refusal) PS Percussion sampler AS Short spiral auger AD/V Solid flight auger: V-Bit Water Level on Date AD/V Solid flight auger: V-Bit Water Inflow								S F F M F	P - Hand/Pocket Penetrometer D - Distr CP - Dynamic Cone Penetrometer ES - Envi	st t stic limit	mple al sample	S - Soft F - Firm
	nt: ect: ation	(Geote	ya Pty echni cours	cal Inv	/estigation West Gosford N	SW Job No	o: 30030437	/5-400.1		H	ole No: BH0' Sheet: 2 of
---	--	--	---	--	-------------------------	---	--	--	---	--	---	--
os	ition	: Ref	er to	Site I	Plan			from Horizo)	Surface	Elevation:
Rig	Туре	e: Ma	sser	iza M	12			ng: Track			Driller: M	MG
Cas	ing C	Diame	eter:	HQ		Bit Type:	Bit Co	ndition:			Contract	tor: Stratacore Drilling P/
Date	e Sta	rted:	5/23	23		Date Complete	ed: 5/23/23 Logge	d By: NM			Checked	l By: TB
	Co	ring					Material Description				Defe	ect Description
Method	Fluid	TCR (%)	RQD (%)	RL (m AHD)	Depth (m)	chara chara cod cod cod cod cod cod cod cod cod cod	. TYPE, plasticity or particle acteristic, colour, secondary & minor components < NAME, grain size and type, olour, fabric and texture, usions & minor components	Veathering S S	timated trength ₅₀₎ MPa al O - Diametral 3	Average Natural Defect Spacing (mm) $_{R}$ $_{R}$ $_{R}$ $_{R}$ $_{R}$ $_{R}$	Visual	Additional Data DEFECT TYPE, orientation, shape, roughness, infilling or coating, thickness, other
					- 0.5 1.0 1.5 							
•					- 2.0 -		T CORING AT 2.20m				2.20): Practical Refusal (slow drilling
					- - 2.5 -	2.40m and ex SAND grey-w	STONE; disturbed spoil recompacted tracted in drill bit STONE; fine to coarse grained, white, bedded 2.86 m: as above, iron indurated, ange	HW			2.40 	gress)) - 2.44 m: SMXW) - 2.60 m: SMXW 6 m: BP, 10°, PR, RF) m: BP, 20°, IR, RF, SN ' m: DB
		82	25		- 3.0 -						2.87 infill	7 - 3.29 m: FZ, IR, RF, organic ing (roots/rootlets)
NMLC	Water				- 3.5 -	3.41m CORE 3.68m	LOSS 0.27m (3.41-3.68)				3.29	9 - 3.41 m: SMXW
	-				- - - - 4.0	SAND	LOSS 0.03m (3.68-3.71) STONE; fine to coarse grained, ange, bedded					1 m: DB) m: DB
		99	91		- - - 4.5 -		4.24 m: as above, fine to medium in to sub-angular gravel inclusions		8 8 8 8 8		4.40	3 m: DB) m: BP, 10°, PR, RF 2 m: DB
					-						4.97	7 m: HB
DR ADA ADA HER PQ HQ DT PS SO	/T So A Ho Ro Ro LC Ro Di Po Po N So	blid flig blid flig blow fli blow fli blow fli blow blow blow blow blow blow blow blow	nt auge ght aug e drillir ore (85) ore (63) ore (51) concret e on sam ling	ig mm) 5mm) 94mm) e coring	it -	VATER Water Level on date shown water inflow water outflow OCK QUALITY ESCRIPTIONS QD Rock Quality Designation (%) CR Total Core	ROCK STRENGTH EH Extremly High VH Very High H High M Medium L Low VL Very Low ROCK WEATHERING FR Fresh SW Slightly Weathered DW Distinctly Weathered MW Moderately Weathered HW Highly Weathered	BP Bedd SM Sean FL Folia VN Vein CL Cleav CS Crus FZ Fract DL Drift I	red zone ing Parting ion vage ned Seam ure Zone	PLANARITY CU Curve DIS Discoi IR Irregu PR Planal ST Stepp UN Undul ROUGHNES VR VR Very F RF Rough S Smool SL Slocks	d htinuous ar ed ose S Rough h	COATING CN Clean SN Stained VNR Veneer (thin or patchy) CT Coating (up to 1mm) INFILL MATERIALS X X Carbonaceus MU Unidentified minteral MS Secondary mineral KT Chlorite CA Calcite Fe Iron Oxide

roj	nt: ect: atior	(Valuy Geote Raceo	chni	, cal Inv	vestigat West G	ion osford NSV	N Job No	: 3003	0437	75-40	0.1				Нс	Sheet: 3	
os	ition		er to		-			Angle 1							Su	rface E	levation:	
ig	Туре	: Ma	ssen	za M	12			Mounti							Dri	iller: M	G	
as	ing [Diame	eter:	HQ		Bit T	ype:	Bit Cor	dition						Co	ntracto	or: Stratacore Drilling	J P/I
ate	e Sta	rted:	5/23/	23		Date	Completed	I: 5/23/23 Logged	d By: N	M					Ch	ecked	By: TB	
	Со	ring						Material Description								Defec	t Description	
INIEILIOU	Fluid	TCR (%)	RQD (%)	RL (m AHD)	Depth (m)	Graphic Log	charac 8 ROCK ۱ colo	YPE, plasticity or particle teristic, colour, secondary & minor components VAME, grain size and type, our, fabric and texture, ons & minor components	Weathering	S Is • Axia	timate trengt (50) MP al O-Dia	h Pa ^{imetral}	Avera Natu Defe Spac (mr	ural ect cing	Visual		Additional Data EFECT TYPE, orientation shape, roughness, infilling r coating, thickness, other	
		99	91		- - 5.5 -		red-oran	ONE; fine to coarse grained, ge, bedded <i>(continued)</i> e, grey with some orange staining	MW							5.19 r 5.21 r 	n: BP, 0 - 5°, IR, RF n: BP, 0 - 15°, IR, RF n: HB n: BP, 10°, UN, RF n: BP, 10°, PR, RF n: BP, 15°, PR, RF	
					- 6.0 											— 6.00 r — 6.25 r	n: HB n: BP, 15°, PR, RF	
					- 6.5 -													
	Water				- - - 7.0 -	<u>::::::</u> е	.87m SILTSTC interbedo SANDST	NE; dark grey, with minor led light grey fine to medium grained ONE	HW								n: BP, 0°, PR, RF 7.44 m: SMXW	
		92	72		- - - 7.5 -		some ind as above	59 m: granular infilled seam, colour, lurated rock fragments e, fine to medium angular to								— 7.44 - — 7.62 r	n: BP, 5 - 10°, PR, RF, SN 7.62 m: CS, /FZ n: BP, 10°, PR, RF n: BP, 20 - 25°, CU, RF	
					- - - 8.0 -		sub-angı	Ilar gravel inclusions	HW - MW							7.78 r 7.81 r	n: DB n: BP, 10°, PR, RF n: BP, 10°, IR, RF n: DB n: HB	
					- - 8.5 -		.80m											
					- 9.0 - -		TERMIN/ Target de	ATED AT 8.80 m apth										
					- - 9.5 - -													
DR ADA ADA HFI WERPQ HQM DT PS SO AH	IT SI A HI R R R R R R R R R R R R R R R R S N S	blid flig blid flig blow fli blow fli blow fli blow fli blow blow blow blow blow blow blow blow	ore (85r ore (63. ore (51. concrete e on sam ling	r: TC-B jer g nm) 5mm) 94mm) e coring	it - - R D R	 on da water water water CCK QUAI ESCRIPTIC QD Rock Desi 	LITY	ROCK STRENGTH EH Extremly High VH Very High H High M Medium L Low VL Very Low ROCK WEATHERING FR Fresh SW Slightly Weathered DW Distinctly Weathered MW Moderately Weathered MW Hightly Weathered	DEFE JT SZ BP SM FL VN CL CS FZ DL HB	Joint Shea Bedd Sean Foliat Vein Cleav Crusl Fract Drift I	ired zon ing Par tion vage hed Se ure Zon	rting am ne	CU DIS IR PR ST UN	Disc Irreg Plar Step Und UGHN Ven Rou Smo	ved continuo gular har oped lulose ESS y Rougl igh	h	COATING CN Clean SN Stained VNR Veneer (thin or patcl CT Coating (up to 1mm) INFILL MATERIALS X Carbonaceus MU Unidentified mintera MS Secondary mineral KT Chlorite CA Calcite Fe Iron Oxide)

XREF's CAD Fi

Stantec Australia Pty Ltd | ABN 17 007 820 322 Level 2, 22 Honeysuckle Drive Newcastle NSW 2300 Tel: +61 2 4940 4100 Web: www.stantec.com RACECOURSE RD GEOTECHNICAL INVESTIGATION WEST GOSFORD, NSW ROCK CORE PHOTOGRAPHY BH01: 2.2 - 8.8M

WALUYA PTY LTD

10.07.2023

NM

Designed

-

300304375-400

А

	ect:	0	Seot	ya Pty Ltd echnical Invest							ŀ	lole No: BH0
	ation			course Rd, Wes	st Gosfor	d NS	N		Job No: 300304375-400.1			Sheet: 1 of
				Site Plan nza MI2					Angle from Horizontal: 90° Mounting: Track		Surfac	e Elevation:
_	ng D								Mounting. Track			ctor: Stratacore Drilling P
	Star			/23 D	ate Com	pleted	d: 5/23	/23	Logged By: NM			ed By: TB
	Drilling			Sampling & T				-	Material Description			
				1 0	DCP TEST	(E		c				
Method	Resistance	Casing	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (r	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-			FILL: Silty SAND; fine to coarse grained, brown, trace fine to medium angular to sub-rounded .20m gravel, trace organics (rootlets)	м		FILL
				B 0.40 - 1.30 m	21 25 Virtual Refusal	- - 0.5 - -			Sandy CLAY; low to medium plasticity, red mottled white, fine to coarse grained sand	M (■PL) - M (<pl)< td=""><td>VSt</td><td>RESIDUAL SOIL</td></pl)<>	VSt	RESIDUAL SOIL
			eq	D 1.30 - 1.50 m SPT 1.50 - 1.95 m 4, 7, 12 N*=19		- - - - - - - - - - - - - - - 2.0			.30m Silty Sandy CLAY; low to medium plasticity, white mottled pale red, fine to medium grained sand	M (© PL) - M (<pl)< td=""><td>VSt</td><td>1.50 m: SPT Recovery: 450 m</td></pl)<>	VSt	1.50 m: SPT Recovery: 450 m
			Groundwater Not Encountered	SPT 3.00 - 3.45 m 10, 18, 14 N*=32		- - - - - - - - - - - - - - - - - - -			.80m Clayey SAND; fine to coarse grained, white-grey, with silt	D-M	D	EXTREMELY WEATHERED 3.00 m: SPT Recovery: 450 m
				SPT 4.50 - 4.94 m 6, 13, 17/135mm N*=R		- - - - - - - - - - - - - - - - - -			.20m Silty CLAY; medium plasticity, grey-white some banded red	M (<pl)< td=""><td>н</td><td>4.50 m: SPT Recovery: 435 m</td></pl)<>	н	4.50 m: SPT Recovery: 435 m
MET EX R HA PT SON AH PS AS AD/ HFA WB	Rip Hai Pus N Soi Air Per Sho V Soi T Soi N Hoi	nd aug sh tube nic drill hamme cussio ort spira id flight	er ing er n sam al aug t auge t auge ht aug ofrillin	et VE E F H VH VH er r: V-Bit r: TC-Bit ger	Very Easy (Ne Easy Firm Hard Very Hard (Re FER Water Lo shown water inf water ou	^{efusal)} evel on low		SF HF DC PS MC	- Hand/Pocket Penetrometer D - D P Dynamic Cone Penetrometer U - T P Perth Sand Penetrometer U - T - Moisture Content MOISTUR 1 Plate Bearing Test D - D 2 Borehole Impression Test M M 0 - Photoionisation Detector W - Vane Shear; P=Peak, L - P	ulk disturbe isturbed sa nvironment nin wall tub E ry oist /et	mple al sample e 'undistu	S - Soft F - Firm

\mathbf{O}) St	ant	ec							В	ORE	HOLE LOG SHEET
Clie Proj				ya Pty Ltd echnical Inv	ostigation						ŀ	lole No: BH02
Loc	ation	: F	Race	course Rd,	Nest Gosfor	d NS	N		Job No: 300304375-400.1			Sheet: 2 of 2
		-		Site Plan					Angle from Horizontal: 90°			e Elevation:
				iza MI2					Mounting: Track		Driller:	
	ing E e Sta			123	Date Com	nlotor	1. 5/23	123	Logged By: NM			ctor: Stratacore Drilling P/L ed By: TB
-	Drilling		5/23		& Testing	pietet	1. 5/23	123	Material Descriptio		CHECK	
				Gamping	DCP TEST	Ē		_	Watcha Descriptio			
Method	Resistance	Casing	Water	Sample o Field Tes	r t Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
			Groundwater Not Encountered	D 6.90 - 7.00 m	3 6 9 12 			0	6.00m 6.00m Sandy CLAY; low plasticity, grey-white some banded red (continued) 6.00m Sandy CLAY; low plasticity, dark red mottled white, fine to corse grained sand 6.80m SANDSTONE; fine to coarse grained, mottled dark red & white, highly weathered 7.00m TERMINATED AT 7.00 m Target depth	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
ME EX RA	Rip	cavato		et .	PENETRATION VE Very Easy (N E Easy F Firm		nce)	S F	P - Hand/Pocket Penetrometer D - D	s ulk disturbe isturbed sa	mple	S - Soft
PT SO AH PS AS AD HF WE RR RR	Pu N So Air Pe Sh /V So /T So /T So /T So /T Ro er to exp	sh tube nic drill hamm rcussic ort spir lid fligh lid fligh illow flig ashbore ck rolle	e ing er al auge t auge	pler er ∵ V-Bit ∵ TC-Bit er	H Hard VH Very Hard (R WATER Water L shown water in Water ou	evel on flow ıtflow		F N F II	Cr by family control relation term Cr Perth Sand Penetrometer C Moisture Content BT Plate Bearing Test IP Borehole Impression Test D Photoionisation Detector S Vane Shear, P=Peak, LL LL	hin wall tub	e 'undistu	Irbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

Clie Proj	nt: ect:	(Geote	ya Pty Ltd echnical Investi	gation							F	lole No: BH0
	ation	: F	Race	course Rd, Wes	t Gosfor	d NS	N		Job No: 300304375-400.				Sheet: 1 of
				Site Plan					Angle from Horizontal: 9	90°	:	Surfac	e Elevation:
-				nza MI2					Mounting: Track			Driller:	-
	ing D				- 1 - 0		L 5/04	(00	Lawred Day MM				ctor: Stratacore Drilling P
	e Star		5/24	-	ate Com	pletec	1: 5/24	/23	Logged By: NM			Спеске	ed By: TB
L	Drilling			Sampling & T	-	_			Material D	Description			
Method	Resistance	Casing	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle charact colour, secondary and minor compon ROCK TYPE, grain size and type, col fabric & texture, strength, weatherin defects and structure	lour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
		•		D 0.05 - 0.15 m	7	-			FILL: Silty Sandy GRAVEL; fine to coar to sub-angular, dark brown-black, fine to 0.20m grained sand		м		FILL
			Itered	D 0.20 - 0.30 m B 0.30 - 0.50 m	Hammer Bouncing	-	000 000		Clayey SAND; fine to coarse grained, y fine to coarse angular to sub-angular gr		D - M	D	EXTREMELY WEATHERED
			JICOUL			- 0.5	00		_{0.50m} as above, orange in colour				
F/d			Not E	SPT 0.50 - 0.60 m 10/100mm		-			SANDSTONE; fine to coarse grained, w highly weathered	white,			WEATHERED ROCK 0.50 m: SPT Recovery: 0.1 m
125mm AD/T		Й. Н	ater	N*=R D 0.70 - 0.90 m	4::::	-			as above, orange in colour				
- 125r			Groundwater Not Encountered		-								0.80 m: Slow progress
			U			- 1.0			as above, white in colour				
						_							
<u> </u>						- 1.5			1.40m Continued as Cored Drill Hole				
						-							
						-							
						-							
						-							
						- 2.5							
						-							
						-							
						-							
						-							
						- 3.5							
						-							
						-							
					<u>iiii</u>	- 4.0							
						-							
					<u>liii</u>	-							
						-4.5							
						-							
						Ľ							
						F							
ME EX	THOD	cavato	r bucki	st l	TRATION			1	ELD TESTS PT - Standard Penetration Test	SAMPLES B - Bulk	disturbe	ed sample	SOIL CONSISTENCY VS - Very Soft
R HA	Rip	per nd aug		F VE	Very Easy (N Easy Firm	o ĸesista	nce)	H H	P - Hand/Pocket Penetrometer	D - Dist	urbed sa		S - Soft
PT	Pu	sh tube nic drill	9	H VH	Hard Very Hard (R	efusal)		P	SP - Perth Sand Penetrometer	U - Thin		e 'undistu	Irbed' St - Stiff VSt - Very Stiff
AH PS	Air	hamm	er			,		1		MOISTURE			H - Hard
AS AD/	Sho V Sol	ort spir lid fligh	al aug t auge	er r: V-Bit	Z Water L shown	evel on	Date	IN	IP - Borehole Impression Test	D - Dry M - Mois			RELATIVE DENSITY VL - Very Loose
AD/ HF/	T Sol A Hol	lid fligh llow flig	t auge pht aug	r: TC-Bit jer	- water in				S - Vane Shear: P=Peak	W - Wet PL - Plas	tic limit		L - Loose MD - Medium Dense
WB RR	Wa	shbore ck rolle	e drillin	g —	A water ou	utflow			R=Resdual (uncorrected kPa)	LL - Liqu w - Mois		ntent	D - Dense VD - Very Dense

roj	nt: ect: ation	(Geote	ya Pt chni cours	, cal Inv	vestigation West Gosford N	SW Job No:	3003	0437	5-400	.1				Hol	e No: BH(Sheet: 2 of
				Site I	-		Angle fi							Sur	face Ele	
				za M			Mountin			itai.	50				ler: MG	
		Diame				Bit Type:	Bit Con									Stratacore Drilling
	-	rted:				Date Complet									cked By	
ull			0, 2-1,	20	1		Material Description	by . 1								Description
		ring I		ô			•		□	inactor	J	A			Delect	Description
Method	Fluid	TCR (%)	RQD (%)	RL (m AHD)	Depth (m)	chai Log BOD ROC	L TYPE, plasticity or particle acteristic, colour, secondary & minor components K NAME, grain size and type, colour, fabric and texture, usions & minor components	Weathering	Str Is ₍₅ ● - Axial	imated rength ₀, MPa ◦- Diam ≥ ± ≶	i ietral	Averag Natura Defec Spacir (mm)	ál t	Visual	sha	Additional Data FECT TYPE, orientation, ape, roughness, infilling coating, thickness, other
					- 0.5											
					- 1.0 - -	1 40m STAF	T CORING AT 1.40m									
					- 1.5		E LOSS 0.75m (1.40-2.15)									
					- - 2.0 -	2.15m	DSTONE; fine to coarse grained, white, bedded, occasional iron	MW -								19 m: DB
					- - 2.5 -	indura	ition/staining							-	— 2.28 m: — 2.44 m:	DB BP, 10 - 15°, IR, VR, SN
NMLC	Water	72	48		- - 3.0									-	🕅 root infill	26 m: JT, sub-vertical, organic
	Wa				- - - 3.5 -			XW - HW						-	- 3.15 m: - 3.26 m: - 3.28 m:	BP, 25 - 30°, UN, RF BP, 5 - 10°, CU, RF DB BP, 0 - 5°, CU, RF BP, 0 - 5°, IR, S
					- - 4.0									-	— 3.72 - 4.	03 m: FZ, /XW Seam
					-		4.53 m: locally indurated (iron) rock of r strength			 Q					— 4.07 - 4. — 4.16 m: — 4.27 m: — 4.31 m: — 4.40 m:	CS DB JT, PR, S, sub-vertical
		94	64		- 4.5 - -										— 4.45 m: — 4.67 m: .	
DR AD AD HF WE RR PQ HQ DT PS SO	/T So A Ho Ro Ro Ro LC Ro Di Po Po N So	blid flig blid flig blow fli blow fli blow fli blow blow blow blow blow blow blow blow	nt auge ght aug e drillin ore (85) ore (63) ore (51) concret e on sam ling	g mm) 5mm) 94mm) e coring	it T	ATER Water Level on date shown water inflow water outflow OCK QUALITY ESCRIPTIONS QD Rock Quality Designation (%) CR Total Core	ROCK STRENGTH EH Extremly High VH Very High H High M Medium L Low VU Very Low ROCK WEATHERING FR Fresh SW Slightly Weathered DW Distinctly Weathered MW Moderately Weathered MW Moderately Weathered	DEFE JT SZ BP SM FL VN CL CS FZ DL HB DB	Beddir Seam Foliatio Vein Cleava Crusho Fractu Drift Li Handir	ed zone ng Parti on age ed Sea ire Zone	ing m e ak	DIS IR PR ST	Curv Disco Irreg Plan Step Undu GHNE Very Roug Smo	ed ontinuor ular ar ped ulose SS Rough gh		COATING CN Clean SN Stained VNR Veneer (thin or patch) CT Coating (up to 1mm) INFILL MATERIALS X Carbonaceus MU Unidentified minteral MS Secondary mineral KT Chlorite CA Calcite Fe Iron Oxide

AGS RTA. Photo. Monitoring Tools Datad 10.03.00.00 00.40 L di J GPJ BUS DEPOT VVEST JRSE RD RACECO STANTEC 2.02.0 LIB.GLB Log CARDNO CORED BOREHOLE 300304375 -

Proj	nt: ect: ation	0	Geote		al Inv	vestigation West Gosford	NSW	200204275 400 4			Hole No: BH0
				Site F		west Gostora	000 1101	300304375-400.1 om Horizontal: 90	٥	e	Sheet: 3 of Irface Elevation:
		-		za Mi	-		Mounting)		iller: MG
_	<u> </u>		eter:		-	Bit Type:	Bit Cond				ontractor: Stratacore Drilling P
	-		5/24/				eted: 5/24/23 Logged				necked By: TB
	Cor		-	-			Material Description	,			Defect Description
		9		Ô	(c	sc	DIL TYPE, plasticity or particle	_ Estimated	Average		
Method	Fluid	TCR (%)	RQD (%)	RL (m AHD)	Depth (m)	Graphic Log ON Cog	A minor components CK NAME, grain size and type, colour, fabric and texture, clusions & minor components	Strength Is ₍₅₀₎ MPa •-Axial O - Diametra	Natural Defect Spacing (mm)	Visual	Additional Data DEFECT TYPE, orientation, shape, roughness, infilling or coating, thickness, other
		94	64		- - - - 5.5 - - -	SAN grey indu	NDSTONE; fine to coarse grained, /-white, bedded, occasional iron iration/staining <i>(continued)</i> above, fine to coarse grained, red, bedded	XW - I I I HW I I I I MW I I I I HW I I I I			— 5.00 - 5.04 m: HB — 5.10 - 5.20 m: FZ 5.61 m: BP, CU, RF, SN 5.61 - 5.69 m: FZ 5.82 m: BP, 10°, PR, RF 5.85 m: BP, 10°, PR, RF 5.87 - 5.94 m: JT, PR, RF, sub-vertical
					- 6.0	6.05m		xw			5.94 - 6.00 m: FZ 6.05 m: DB
					-	6.17m COI	RE LOSS 0.12m (6.05-6.17)	$\boxtimes \square \square \square \square$			
					-		NDSTONE; fine to coarse grained, red, inated	MW			6.17 m: DB 6.19 m: DB 6.25 m: DB
NMLC	Water				- 6.5 -	6.37m 6.37m SIL inte SAN	TSTONE; dark grey, with minor rbedded light grey, fine to medium grained USTONE, occasional iron iration/staining	XW			- 6.23 fil. DB - 6.33 - 6.37 m: DB - 6.43 m: BP, 5°, PR, RF, CT - 6.45 m: BP, 15 - 20°, PR, RF - 6.67 m: BP, 5 - 10°, PR, RF
	>	89	70		- - - 7.0 - -		lly indurated (iron) rock of higher strength				- 6.81 m: DB 7.00 m: HB 7.02 m: HB 7.13 m: BP, 0 - 5°, ST, RF 7.18 m: JT, 85°, IR, RF 7.27 m: CS
					- - 7.5 - -						— 7.41 m: JT, 60 - 70°, IR, RF — 7.51 - 7.60 m: FZ — 7.64 - 7.71 m: FZ
					- 8.0 -	8.26m					
					-		RE LOSS 0.14m (8.26-8.40)				- 0.21 III. DB
V.					- 8.5 - -	TEF	RMINATED AT 8.40 m get depth				
					- 9.0 - -						
					- 9.5 - -						
					_						
DRI AD/ AD/ HFA WB RR PQ HQ NMI DT PS SON AH	T So A Ho Ro Ro LC Ro LC Ro Pu Pu Pe N So	blid fligh blid fligh blow fli ashbor ock rolle otary co otary co otary co atube c ush tub	ght aug e drillin er ore (85r ore (63. ore (51. concrete e on sam ling	r: TC-Bi g nm) 5mm) 94mm) e coring	R R R	ATER Water Level on date shown water inflow water outflow OCK QUALITY SESCRIPTIONS DD Rock Quality Designation (% Total Core Personary (%)	ROCK STRENGTH EH Extremly High VH Very High H High M Medium L Low VL Very Low ROCK WEATHERING FR Fresh SW Slightly Weathered 0) DVW Distinctly Weathered MW Moderately Weathered HW Highly Weathered XW Extremly Weathered	DEFECT TYPE JT Joint SZ Sheared zone BP Bedding Parting SM Seam FL Foliation VN Vein CL Cleavage CS Crushed Seam FZ Fracture Zone DL Drift Lift HB Handing Break DB Drilling Break	IR Irreg PR Plana ST Step UN Undu ROUGHNE VR Very RF Roug S Smoo	ed ontinuo ular ar ped ilose SS Rougi gh oth kensid	VNR Veneer (thin or patchy) CT Coating (up to 1mm) INFILL MATERIALS X Carbonaceus MU Unidentified minteral MS Secondary mineral KT Chlorite CA Calcite
						Recovery (%)	ATT EAGEININ WEathered		FUL PUIS	ueu	

XREF's CAD Fi

Stantec Australia Pty Ltd | ABN 17 007 820 322 Level 2, 22 Honeysuckle Drive Newcastle NSW 2300 Tel: +61 2 4940 4100 Web: www.stantec.com RACECOURSE RD GEOTECHNICAL INVESTIGATION WEST GOSFORD, NSW ROCK CORE PHOTOGRAPHY BH01: 1.4 - 8.4M

WALUYA PTY LTD

10.07.2023

NM

Designed

-

300304375

1211

А

	ect:	0	Geot	ya Pty Ltd echnical Investigation						ŀ	lole No: BH0
	ation	: F	Race	course Rd, West Gosf	ord NSV	N		Job No: 300304375-400.1			Sheet: 1 of
				Site Plan				Angle from Horizontal: 90°			e Elevation:
_				nza MI2				Mounting: Track		Driller:	
	ing D e Sta			/23 Date Co	mplotod	· 5/24	172	Logged By: NM			ctor: Stratacore Drilling P ed By: TB
			5/24			I. J/24	25			CHECK	
-	Drilling			Sampling & Testing				Material Description			
Method	Resistance	Casing	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
•					-			0.10m FILL: Silty Gravelly SAND, fine to coarse grained, dark-brown, fine to coarse grained angular to sub-rounded gravel	D - M D - M		FILL
				B 0.30 - 1.50 m	_			0.30m Sandy GRAVEL; fine to coarse angular to sub-rounded, dark-brown/black, fine to coarse /			RESIDUAL SOIL
					-			\grained sand Sandy CLAY; low to medium plasticity,			
				SPT 0.50 - 0.95 m 5, 4, 6 N*=10	- 0.5			brown-orange, fine to coarse grained sand, with fine to coarse angular to sub-angular gravel			0.50 m: SPT Recovery: 450 m
					- - - 1.0					St	
				SPT 1.50 - 1.95 m	- - - 1.5			as above, red mottled brown-orange			1.50 m: SPT Recovery: 450 m
				5, 10, 10 N*=20	-				M (≈PL)		
			ot Observed		- 2.0 - - -				- M (<pl)< td=""><td></td><td></td></pl)<>		
125mm AD/T			Groundwater Not Observed		- 2.5					VSt	
			ō		-			as above, white, increasing sand content, becoming friable			2.70 m: borderline Clayey SAND
				SPT 3.00 - 3.45 m 4, 8, 9 N*=17							3.00 m: SPT Recovery: 450 m
					 			3.80m			
					- 4.0 -			Clayey SAND; fine to coarse grained, white-grey			EXTREMELY WEATHERED
				SPT 4.50 - 4.63 m 20/125mm					D - M	D	4.50 m: SPT Recovery: 450 m
				N*=R] 						
ME EX R HA PT SO A DI A D	Rip Ha Pu N So Air Pe Sh /V So /T So	cavator per nd aug sh tube nic drill hamm rcussic ort spir id fligh id fligh llow flig	er ing er on sam al aug t auge t auge	Pler er r: V-Bit er er	(No Resistar (Refusal) r Level on n inflow		S H D M M I N	P Hand/Pocket Penetrometer D Display CP Dynamic Cone Penetrometer U This SP Perth Sand Penetrometer U This C Moisture Content MOISTURE BT Plate Bearing Test D D ID Photoionisation Detector W Wo S Vane Shear Pepeak PL Plate	vironment n wall tub ist t stic limit	mple al sample	S - Soft F - Firm St - Stiff VSt - Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dens
WB RR		shbore ck rolle		g — water	outflow			R=Resdual (uncorrected kPa) LL - Liquer Moi	isture con	itent	D - Dense VD - Very Dense

lient:		tec	ya Pty Ltd							В			ELOG SHEE
roject: ocatior	(Geote	echnical Investigation								F	1016	No: BH0
			Site Plan					Job No: 300304375-40 Angle from Horizontal:			Surfac	e Elevati	Sheet: 2 of
			nza MI2					Mounting: Track			Driller:		011.
asing I			-					y		(Contra	ctor: St	ratacore Drilling P/
ate Sta	arted:	5/24	/23 Date Co	mpleted	1: 5/24	/23		Logged By: NM		(Checke	ed By: T	В
Drillin	g		Sampling & Testing					Materia	I Description				
0				Ê		Ę							
Resistance	Casing	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle char colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	colour,	Moisture Condition	Consistency Relative Density	&	STRUCTURE Other Observations
				-				Clayey SAND; fine to coarse grained (continued)	d, white-grey	D - M	D	EXTREME	LY WEATHERED
				Ĺ									
				5.5 - - -			5.50m	Silty Sandy CLAY; low to medium pl: white-grey, fine to coarse grained sa	nd -	M (≈ PL) - M (>PL)		-	
			SPT 6.00 - 6.45 m 3, 6, 10 №=16	- 6.0 - -				as above, medium plasticity, fine gra	ined sand			6.00 m: SF	PT Recovery: 450 m
		erved		- 6.5 						M (≈ PL) - M (<pl)< td=""><td>VSt</td><td></td><td></td></pl)<>	VSt		
		Groundwater Not Observed		- 7.0 - -			7.30m						
			SPT 7.50 - 7.80 m 11, 20 N*=R	- 7.5 -				Silty CLAY; low plasticity, grey-white				7.50 m: SF	PT Recovery: 450 m
				- 8.0 - -						M (<pl)< td=""><td>н</td><td></td><td></td></pl)<>	н		
				- 8.5 - - -				as above, dark grey, trace fine to co gravel (sandstone/siltstone rock frag				8.50 m: zo sandstone	nes of weathered /siltstone
,			SPT 9.00 - 9.20 m 12, 10/50mm N*=R	9.0			9.20m	TERMINATED AT 9.20 m				9.00 m: SF	PT Recovery: 450 m
				- - - 9.5 - -				Target depth					
METHOD			PENETRATIO			F		ESTS	SAMPLES				SOIL CONSISTENCY
EX EX R Ri HA Ha SON So AH Ai PS Pe AS Sh AD/V So AD/T So HFA Ho	kcavato ipper and aug ush tub onic dril ir hamm ercussio hort spi olid fligh olid fligh ollow flig	ger e ling ner on sam ral auge nt auge nt auge	er VE Very Easy E Easy F Firm H Hard VH Very Hard WATER Show show water	r (No Resista I (Refusal) r Level on n : inflow		SH DP PM PIN P	iPT - iP - iCP - iSP - iSP - iBT - iBT - iPID -	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test	B - Bulk D - Distu ES - Envi U - Thin MOISTURE D - Dry M - Mois W - Wet PL - Plas LL - Liqui	irbed sai ronmenta wall tube t tic limit	mple al sample		VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Densi D - Dense

STANTE 2 220 LB CLB Log CARDNO NON-CORED 30304375 - RACECOURSE RD WEST GOSFORD_BUS DEPOT.GPJ << ray an adving File>> 22/09/2023 09:48 10.03.00.09 Daggel AGS RTA, Pholo, Monitoring Tools

			tec	ya Pty Ltd										
Proj	ect: atior		Geot	echnical Investigation course Rd, West Gosfo	ord NSI	N			lah Nai 200204275 40		ole	NO	: BH05/M	
				Site Plan	10 1031	, v			Job No: 300304375-40 Angle from Horizontal:			Surface	Sheet: e Elevation:	1 01
		-		be 7822dt					Mounting: Track	. 30		Driller:		
_			eter:										ctor: Tuck Enviro. Dr	illing
	_		: 25/1		npletec	1: 25/1	/24		Logged By: NM				ed By: GA	
[Drillin	g		Sampling & Testing					M	aterial Descrip	tion			
	<i>(</i> 1)		1		Ê		E							
Method	Resistance	Casing	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle chan colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations	Monitoring Mall Details
					-			0.15m	TOPSOIL FILL: Silty SAND; fine to o grained, dark brown, trace fine to co sub-angular to sub-rounded gravel,	arse	D		FILL	83
	Е				-			0.50m	FILL: Sandy CLAY / Clayey SAND; I plasticity, brown-orange, fine to coar sand		M (<pl) <br="">D</pl)>			-
		$\left \right $			- 0.5			0.70m	FILL: Clayey Gravelly SAND; dark b coarse grained sand, fine to medium to angular gravel	n sub-angular	D - M			-
					-			0.90m	FILL: Clayey SAND; brown, fine to c sand, with fine to medium angular to gravel Sandy CLAY; low plasticity, mottled	rounded	D - M		EXTREMELY WEATHERED	-
		MH		SPT 1.00 - 1.45 m 12, 24, 17 N*=41	1.0			1.10m	SAND; fine to coarse grained, red, y white, with clay, trace fine to coarse	rellow and	M (<pl)< td=""><td>н</td><td>1.00 m: SPT Recovery: 450 m</td><td></td></pl)<>	н	1.00 m: SPT Recovery: 450 m	
125mm SFA AD/V					- 1.5				gravel (parent rock fragments)	angulai				-
125mm	н				- - -						D	D		
					- 2.0 -			2.20m						
		•			- 2.5				Sandy CLAY; low to medium plastici mottled orange, fine to medium grain		M (<pl) -<br="">M (≈PL)</pl)>	н		
				SPT 2.50 - 2.85 m 5, 31, 20/50mm N*=R	-			2.70m	SAND; fine to medium grained, light red and orange, trace clay	grey mottled			2.50 m: SPT Recovery: 350 m	
V					3.0-			3.00m	Continued as Cored Drill Hole		D	D - VD		
					-									-
					- 3.5									
														-
					- -									
					- 4.5 -									
					-									
EX R HA PT SOI AH PS AD/ AD/ HF/	Ri Ha Pu N So Ai Pe Sh Sh Sh So A Ho	xcavato ipper and au ush tub onic dri r hamn ercussi hort spi olid flig olid flig ollow fli	be illing ner ion sam iral auge ht auge ight auge	Pler er r: V-Bit er	No Resistar Refusal) Level on nflow		S F F M F	FIELD 1 SPT - IP - DCP - PSP - PSP - PST - MP - PID - YS -	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionistation Detector Vane Shear, P=Peak,	D - Dist ES - Env U - Thir MOISTURE D - Dry M - Moi: W - Wet PL - Plas	urbed sa ironment n wall tube st	d sample mple al sample e 'undistu	rbed' rbed' st - Stiff St - Stiff VSt - VerySt H - Hard RELATIVE DEN VL - VeryLc L - Loose MD - Mediun	oft iff SITY pose
	Ro er to ex	planator	y notes f	g water of escriptions		STAN	 T	FC	R=Resdual (uncorrected kPa)		sture con	tent	D - Dense VD - Very D	ense

ient: ojec ocati	t:	G	eote	a Pty chnic	al Inv	vestigation West Gosfor	d NSW	Job No): 3003	04375-4	00.1	Но	le l	No:	BH05/N Shee	IWO et: 2 of
				Site P	-			Angle f				0	Su	rface El	evation:	
				be 78				Mounti					Dri	ller: JT		
asing	g Dia	met	er:	HW		Bit Type:		Bit Cor	ndition:				Co	ntractor	: Tuck Enviro.	Drilling
ate S	tarte	d: 2	25/1/	24	-	Date Com	pleted: 25/1/24	Logged	d By: N	M			Ch	ecked B	By: GA	
(Coring	3					Materia	l Description					De	ect Des	cription	
Ehilid		10K (%)	RQD (%)	RL (m AHD)	Depth (m)	phic 3g	SOIL TYPE, plastic characteristic, colo & minor comp COK NAME, grain colour, fabric an inclusions & minor	ur, secondary ponents size and type, nd texture,	Weathering	Estima Stren Is ₍₅₀₎ N • - Axial O - 5 5 - 7 - 2 3	gth /IPa _{Diametral}	Average Natural Defect Spacing (mm) R & R & R & R	Visual	DEFEC shape,	dditional Data T TYPE, orientation roughness, infilling ng, thickness, othe) <
					- - - 0.5 - - - - -											
					- - - - 1.5 -											-
					- 2.0 											-
					- - - 2.5 -											-
					- - - 3.0		START CORING AT 3.0		xw							-
					-		rey with red and orange		HW - MW					— 3.26 m: ∼ 3.29 m:		
					- 3.5 - -				XW				=	3.60 m: 3.62 m: 3.71 m: CN		
Dolymer		00	97		- 4.0 -										: DB : DB I.24 m: JT, 65°, PR,	
					- - - 4.5									↓ 4.26 m: VR, SN ↓ 4.39 m: ↓ 4.52 m: CN ← 4.62 m:	: BP, 5 - 15°, UN, I, (Fe) : DB : BP, 35°, IR, VR,	
		00	92		-									VR, CN 4.72 m	DB	
DRILLI AD/V AD/T IFA VB RR PQ IQ IQ IQ IQ IQ IQ IQ IQ IQ IQ IQ IQ IQ	Solid Solid Hollov Wash Rock Rotar Rotar Diatu Push	flight w fligh bore roller y core y core y core be co tube ission	augen ht aug drillin e (85n e (63.) e (51.) ncrete n sam	g 5mm) 54mm) 94mm) e coring	t F	ATER Water Level on date show water inflow water outflow OCK QUALITY ESCRIPTIONS QD Rock Quality Designation CR Total Core	y H High M Mediun L Low VL Very Lo ROCK WEA FR Fresh SW Slightly DW Distinct DW Distinct	ly High Igh n ww	JT SZ BP SM FL VN CL CS FZ DL	CT TYPE Joint Sheared 2 Bedding F Seam Foliation Vein Cleavage Crushed S Fracture 2 Drift Lift Handing F	Parting Seam Zone	IR Irre PR Pla ST Ste UN Und ROUGHN VR Ver RF Rot	ved continuo gular nar pped dulose ESS y Rougl		COATING CN Clean SN Stained VNR Veneer (thin of CT Coating (up to INFILL MATERIALS X Carbonaceus MU Unidentified n MS Secondary m KT Chlorite CA Calcite	o 1mm)

lier roje .oca		(Geote	ya Pty echnic course	al Inv	/estigation West Gosford I	NSW Job No	30030	4375-400.1	Hole	No: BH05/N	1W0 et: 3 of
osi	tion	Refe	er to	Site P	lan		Angle f	rom Hor	izontal: 90	°S	urface Elevation:	·
-				be 78	22dt		Mountii	ng: Tra	ck		riller: JT	
	-		eter:			Bit Type:	Bit Con				ontractor: Tuck Enviro.	Drilling
)ate	Sta	rted:	25/1/	24		Date Comple	eted: 25/1/24 Logged	By: NN	Λ		hecked By: GA	
	Co	ing					Material Description			D	efect Description	
Method	Fluid	TCR (%)	RQD (%)	RL (m AHD)	Depth (m)	Cha Cuabh Co Co Co Co Co Co Co Co Co Co Co Cha Cha Cha Cha Cha Cha Cha Cha Cha Cha	DIL TYPE, plasticity or particle aracteristic, colour, secondary & minor components CK NAME, grain size and type, colour, fabric and texture, closions & minor components	/eș	Estimated Strength Is ₍₅₀₎ MPa	Average Natural Defect Spacing (mm) 8 & & & & & & & & & & & & & & & & & & &	or coating, thickness, othe	g - :
		100	92		- - - 5.5 - -	grey (con	IDSTONE; fine to medium grained, light with red and orange staining, bedded <i>tinued</i>) above, fine grained, light and dark grey bedded laminations, thinly laminated	MW XW			 5.23 m: DB 5.25 - 5.45 m: JT, 80 - 90°, PR, RF, FILLED 5.46 m: DB 5.59 m: BP, 0 - 5°, UN, RF / SM, VNR (Clay) 	
-	31/01/24				- 6.0 - -		bove, fine to medium grained, light grey red and orange staining, bedded	MW			5.94 m: BP, 15°, IR, VR / SM, VNR (Clay) 6.00 m: HB 6.06 m: BP, 10°, PR, VR, CN 6.08 m: BP, DIS 6.09 m: BP, DIS 6.00 m: BP, DIS 6.10 m: BP, DIS 6.11 m: BP, 0 - 5°, UN, VR,	
					- 6.5 - - -						SN, (Fe) 6.18 m: BP, 15°, UN, VR, SN, (Fe) 1.6.18 - 6.27 m: JT, 80 - 90°, UN, VR, SN, (Fe) 6.27 m: BP, 0 - 5°, UN, VR, SN, (Fe) - 6.34 m: DB - 6.42 m: DB - 6.42 m: DT, 70°, UN,	
NMLC	Polymer				7.0 - - - - 7.5						VR, SN, (Fe) 7.00 m: HB 7.13 m: BP, 0 - 10°, UN, VR, CN — 7.32 m: DB	
		100	97		- - - - 8.0 -						7.70 m: BP, 0 - 15°, PR, VR, SN, (Fe)	
					- - - 8.5 - -							
					- 9.0 - - -	As a inter	bove, fine grained, light and dark grey bedded laminations, thinly laminated	xw			— 8.97 m: HB 9.00 m: HB ∑ 9.07 m: BP, 5°, PR, VR / SM, CT (Clay)	
		100	91		- 9.5 - - -	coran	bove, fine to coarse grained, red and ge, bedded, fine to coarse sub-rounded to ded gravel (lithic) inclusions	MW			9.80 - 9.91 m: JT, 80 - 90°, DIS	
AD/A AD/A HFA WB RR PQ HQ NML DT PT PS SON AH	T So Ho W Ro Ro Ro C Ro Di Pu Pu Pe N So	lid fligh lid fligh ashbor ock rolle otary co otary co atay co atube c ish tub	nt auge ght aug e drillin ore (85) ore (63) ore (51) concret e on sam ling	ig mm) 5mm) 94mm) e coring	R R R	Arter Water Level on date shown water inflow water outflow OCK QUALITY ESCRIPTIONS QD Rock Quality Designation (% CR Total Core	ROCK STRENGTH EH Extremly High VH Very High H High M Medium L Low VL Very Low ROCK WEATHERING FR FR Fresh SW Slightly Weathered DW Distinctly Weathered	SZ S BP B SM S FL F VN V CL C CS C FZ F DL D HB H	T TYPE oint iheared zone ieading Parting ieam oliation 'ein Eleavage rrushed Seam racture Zone orift Lift landing Break	PLANARITY CU Curved DIS Discontin IR Irregular PR Planar ST Stepped UN Undulose ROUGHNESS VR Very Rou RF Rough S Smooth SL Slockens	yNR Veneer (thin CT Coating (up t INFILL MATERIALS X Carbonaceus MU Unidentified T MS Secondary m KT Chlorite CA Calcite	o 1mm) S minteral

	nt: ect: ition	0	Geote	ya Pty echni cours	cal Inv	vestigation West Gosford	d NSW Job No	: 300304375-400.1	Hole	No: BH05/M Sheet	W0 : 4 of
				Site I			v	rom Horizontal: 90°	S	urface Elevation:	
lig 1	Гуре	: Ge	opro	be 78	322dt			ng: Track	D	riller: JT	
asi	ng C	Diame	eter:	HW		Bit Type:	Bit Con	dition:	С	ontractor: Tuck Enviro. D	Drilling
ate	Sta	rted:	25/1	24		Date Comp	bleted: 25/1/24 Logged	By: NM	С	hecked By: GA	
	Cor	ring					Material Description		De	efect Description	
	Fluid	TCR (%)	RQD (%)	RL (m AHD)	Depth (m)	o Graphic Log BU	SOIL TYPE, plasticity or particle haracteristic, colour, secondary & minor components OCK NAME, grain size and type, colour, fabric and texture, nclusions & minor components	Keathering Bernard Strength Is(50) MPa ● Axial O - Diametral 5 5 5 - 5 9 2 1 5 H	Average Natural Defect Spacing (mm) S S S S S S S S S S S S S S S S S S S	Additional Data DEFECT TYPE, orientation, shape, roughness, infilling or coating, thickness, other	Monitoring
		100	91		- 10.5 	gr (C As da	ANDSTONE; fine to medium grained, light rey with red and orange staining, bedded ontinued) s above, fine to medium grained, light and ark grey interbedded laminations, thinly minated	MWV I I I XW I I I HWV II I I HWV II I I HWV III I I IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		 10.00 m: HB 10.13 - 10.28 m: FZ 10.32 m: DB 10.40 m: HB 10.47 m: HB 10.61 m: HB 10.61 m: HB 11.04 m: BP, 0°, PR, RF, CT, (Clay) 11.04 m: BP, 5°, PR, RF, CT, (Clay) 11.04 - 11.12 m: JT, 45 - 50°, PR, RF, CT, (Clay) 11.46 - 11.54 m: FZ 	
		100	100		- 11.3 - - - 12.0 -			HW		- 11.40 - 11.54 m. P2 - 11.58 m. DB - 11.81 m. DB - 12.00 m. HB - 12.06 m. DB	
	Polymer				- 12.5 - - - - - 13.0 -					- 12.57 m: DB - 12.85 m: HB - 12.97 m: DB - 13.00 m: DB - 13.00 m: BP, 0 - 15°, UN, VR, SN, (Fe) - 13.10 m: BP, 0 - 5°, UN, VR, SN, (Fe) - 13.13 m: BP, 10°, UN, VR, SN, (Fe)	
		100	84		- 13.5 	As As	s above, fine to medium grained, grey, edded s above, fine grained, dark grey, bedded s above, fine to medium grained, grey, edded	HW SW HW SW H		13.83 m: BP, 15°, PR, VR, SN, (Fe) 13.83 - 13.89 m: JT, 75°, UN, VR, CN - 13.95 m: DB - 13.95 m: DB - 14.00 m: HB 14.23 m: BP, 0 - 5°, PR, VR, VNR, (Clay) - 14.30 - 14.37 m: FZ 14.46 m: BP, 0 - 10°, PR, VR, CN 14.56 m: BP, 0 - 10°, PR, VR, CN - 14.68 - 14.69 m: SM, FILLED 14.75 m: BP, 0 - 10°, UN,	
DRII AD/ AD/ HFA WB RR PQ HQ NML DT PS SON AH	So Ho Ro Ro C Ro Di Pu Pu So	blid fligh blid fligh blow fli ashbor ock rolle otary co otary co otary co	nt auge ght aug e drillir er ore (85 ore (63 ore (51 concret e on sam ling	ig mm) .5mm) .94mm) e coring	it - Ri Di R	ATER Water Level on date shown water inflow water outflow OCK QUALITY ESCRIPTIONS QD Rock Quality Designation CR Total Core Recovery (%	H High M Medium L Low VL Very Low ROCK WEATHERING FR Fresh SW Slightly Weathered DW Distinctly Weathered HW Moderately Weathered HW Highly Weathered	DEFECT TYPE JT Joint SZ Sheared zone BP Bedding Parting SM Seam FL Foliation VN Vein CL Cleavage CS Crushed Seam FZ Fracture Zone DL Drift Lift HB Handing Break DB Drilling Break	PLANARITY CU Curved DIS Discontin IR Irregular PR Planar ST Stepped UN Undulose ROUGHNESS VR Very Rou RF Rough S Smooth SL Slockensi POL Polished	wous VR, VNR, (Clay) COATING CN Clean SN Stained VNR Veneer (thin or CT Coating (up to ' INFILL MATERIALS X Carbonaceus MU Unidentified min MS Secondary min KT Chlorite CA Calcite	1mm)

Client: Waluya Pty Ltd Project: Geotechnical Investigation Location: Racecourse Rd, West Gosford NSW Position: Refer to Site Plan						Hol	e l	No: BH05/MV						
			Bosford NSW			04375-400.1			Sheet:	5 of				
		-			-			Angle f Mounti		orizontal: 90	р о		rface Elevation:	
)iame		be 78 HW	2201	Bit 1	Гуре:	Bit Con		ICK	Driller: JT Contractor: Tuck Enviro. Drilli			illina
	-	rted:					Completed: 25/1/24	Logged		М			ecked By: GA	iiiig
		ring	-				•	I Description					fect Description	
Method	Fluid	TCR (%)	RQD (%)	RL (m AHD)	Depth (m)	Graphic Log	SOIL TYPE, plastic characteristic, colou & minor comp ROCK NAME, grain colour, fabric an inclusions & minor	ity or particle ur, secondary ponents size and type, id texture,	Weathering	Estimated Strength Is ₍₅₀₎ MPa • Axial O - Diametra	Average Natural Defect Spacing (mm) ଚୁ ର ଜ ର ର ଛ ର	Visual	Additional Data DEFECT TYPE, orientation, shape, roughness, infilling or coating, thickness, other	Monitoring Well Details
¥		100	84		- - - 15.5 - -		15.11m As above, fine to medium dark grey interbedded la laminated TERMINATED AT 15.11 Target depth	minations, thinly					L 14.76 m: BP, 0 - 10°, UN, VR, SN, (Fe) 15.07 m: BP, 0 - 5°, PR, VR, CN	-
					16.0 - - - - 16.5 - -									
					- - 17.0 - - - - 17.5 -								- 	
					- - - 18.0 - - -								- - - - - - - - - - - - - - - - - - -	
					18.5 - - - - 19.0 -									
					- - - 19.5 - - -									
AD AD HF WE RR PG HG	WT SHORE	olid fligl olid fligl ollow fli /ashbor ock rollo otary co otary co otary co	nt auge ght aug e drillir er ore (85 ore (63 ore (51 concret e on sam ling	nm) .5mm) .94mm) æ coring		on d wate wate wate CCK QUA SCRIPT QD Ro De CR Tot	IONS FR Fresh ck Quality SW Slightly signation (%) MW Modera al Core HW Highly	ly High gh 1 ww	JT SZ BP SM FL VN CL CS FZ DL HB	CT TYPE Joint Sheared zone Bedding Parting Seam Foliation Vein Cleavage Crushed Seam Fracture Zone Drift Lift Handing Break Drilling Break	IR Irreg PR Plan ST Step UN Und ROUGHNI VR Very RF Rou S Smo	ved continue jular pped ulose ESS v Rougi gh poth kensid	VNR Veneer (thin or p CT Coating (up to 1r INFILL MATERIALS X Carbonaceus MU Unidentified mint h MS Secondary miner KT Chlorite CA Calcite	nm)

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

Stantec Australia Pty Ltd | ABN 17 007 820 322 Level 2, 22 Honeysuckle Drive Newcastle NSW 2300 Tel: +61 2 4940 4100 Web: www.stantec.com RACECOURSE RD GEOTECHNICAL INVESTIGATION WEST GOSFORD, NSW ROCK CORE PHOTOGRAPHY BH05: 3.00 - 15.11M

WALUYA PTY LTD

29/01/2024

NM

Designed

-

300304375

А

Explanatory Notes

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Method	Method							
Test Pitting: exca	Test Pitting: excavation/trench							
BH	Backhoe bucket							
EX	Excavator bucket							
R	Ripper							
Н	Hydraulic Hammer							
Х	Existing excavation							
Ν	Natural exposure							
Manual drilling: ł	nand operated tools							
HA	Hand Auger							
Continuous sam	ple drilling							
PT	Push tube							
PS	Percussion sampling							
SON	Sonic drilling							
Hammer drilling								
AH	Air hammer							
AT	Air track							
Spiral flight auge	er drilling							
AS	Auger screwing							
AD/V	Continuous flight auger: V-bit							
AD/T	Continuous spiral flight auger: TC-Bit							
HFA	Continuous hollow flight auger							
Rotary non-core	drilling							
WB	Washbore drilling							
RR	Rock roller							
Rotary core drilli	ng							
PQ	85mm core (wire line core barrel)							
HQ	63.5mm core (wire line core barrel)							
NMLC	51.94mm core (conventional core barrel)							
NQ	47.6mm core (wire line core barrel)							
DT	Diatube (concrete coring)							

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling metho	Sampling method							
Soil sampling								
В	Bulk disturbed sample							
D	Disturbed sample							
С	Core sample							
ES	Environmental soil sample							
SPT	Standard Penetration Test sample							
U	Thin wall tube 'undisturbed' sample							
Water sampling								
WS	Environmental water sample							

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

Field	testing

	3				
SPT	Standard Penetration Test				
HP/PP Hand/Pocket Penetrometer					
Dynamic Penetrometers (blows per noted increment)					
	DCP	Dynamic Cone Penetrometer			
	PSP	Perth Sand Penetrometer			
MC	Moisture	Content			
VS	Vane Sh	ear			
PBT	Plate Bea	aring Test			
IMP	Borehole	Impression Test			
PID	Photo Io	nization Detector			

If encountered, refusal (R), virtual refusal (VR) or hammer bouncing (HB) of penetrometers may be noted.

The quality of the rock can be assessed by the degree of natural defects/fractures and the following.

Rock q	Rock quality description						
TCR	Total Core Recovery (%)						
	(length of core recovered divided by the length of core run)						
RQD	Rock Quality Designation (%)						
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)						

Notes on groundwater conditions encountered may include.

Excavation is dry in the short term
Water level observation not possible
Water seeping into hole
Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions						
Stable	No obvious/gross short term instability noted					
Spalling	Material falling into excavation (minor/major)					
Unstable	Collapse of the majority, or one or more face of the excavation					

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classific	ation	Particle Size (mm)
CLAY		< 0.002
SILT		0.002 0.075
SAND	fine	0.075 to 0.21
	medium	0.21 to 0.6
	coarse	0.6 to 2.36
GRAVEL	fine	2.36 to 6.7
	medium	6.7 to 19
	coarse	19 to 63
COBBLES		63 to 200
BOULDERS		> 200

Soil types may be qualified by the presence of minor components on the basis of field examination methods and/or the soil grading.

Terminology	In coarse	In fine soils	
reminology	% fines	% coarse	% coarse
Trace	≤5	≤15	≤15
With	>5, ≤12	>15, ≤30	>15, ≤30

The strength of cohesive soils is classified by engineering assessment or field/lab testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	≤12kPa
Soft	S	12kPa to ≤25kPa
Firm	F	25kPa to ≤50kPa
Stiff	St	50kPa to ≤100kPa
Very Stiff	VSt	100kPa to ≤200kPa
Hard	н	>200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index
Very Loose	VL	<15%
Loose	L	15% to ≤35%
Medium Dense	MD	35% to ≤65%
Dense	D	65% to ≤85%
Very Dense	VD	>85%

The plasticity of cohesive soils is defined by the Liquid Limit (LL) as follows.

Plasticity	Silt LL	Clay LL
Low plasticity	≤ 35%	≤ 35%
Medium plasticity	N/A	> 35% ≤ 50%
High plasticity	> 50%	> 50%

The moisture condition of soil (*w*) is described by appearance and feel and may be described in relation to the Plastic Limit (PL), Liquid Limit (LL) or Optimum Moisture Content (OMC).

Dry	Cohesive soils: hard, friable, dry of plastic limit. Granular soils: cohesionless and free-running
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere
Wet	Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere

The structure of the soil may be described as follows.

Zoning	Description
Layer	Continuous across exposure or sample
Lens	Discontinuous layer (lenticular shape)
Pocket	Irregular inclusion of different material

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

Soil origin and description		
Fill	Anthropogenic deposits or disturbed material	
Topsoil	Zone of soil affected by roots and root fibres	
Peat	Significantly organic soils	
Colluvial	Transported down slopes by gravity/water	
Aeolian	Transported and deposited by wind	
Alluvial	Deposited by rivers	
Estuarine	Deposited in coastal estuaries	
Lacustrine	Deposited in freshwater lakes	
Marine	Deposits in marine environments	
Residual soil	Soil formed by in situ weathering of rock, with no structure/fabric of parent rock evident	
Extremely weathered material	Formed by in situ weathering of geological formations, with the structure/fabric of parent rock intact but with soil strength properties	

The origin of the soil generally cannot be deduced solely on the appearance of the material and the inference may be supplemented by further geological evidence or other field observation. Where there is doubt, the terms 'possibly' or 'probably' may be used

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Rock types are generally described according to the predominant grain or crystal size, and in groups for each rock type as follows.

Rock type	Groups
Sedimentary	Deposited, carbonate (porous or non), volcanic ejection
Igneous	Felsic (much quartz, pale), Intermediate, or mafic (little quartz, dark)
Metamorphic	Foliated or non-foliated
Duricrust	Cementing minerology (iron oxides or hydroxides, silica, calcium carbonate, gypsum)

Reference should be made to AS1726 for details of the rock types and methods of classification.

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and symbol		Definition	
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident	
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties. Mass structure and substance still evident	
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores. May be distinguished into MW (Moderately Weathered) and HW (Highly Weathered).	
Slightly weathered	SW	Slightly discoloured; little or no change of strength from fresh rock	
Fresh Rock	FR	The rock shows no sign of decomposition or staining	

The rock material strength can be defined based on the point load index as follows.

Term and symbo	bl	Point Load Index I₅50 (MPa)
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	Μ	0.3 to 1.0
High	Н	1.0 to 3
Very High	VH	3 to 10
Extremely High	EH	> 10

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing measured normal to defects of the same set or bedding, is described as follows.

Definition	Defect Spacing (mm)
Thinly laminated	< 6
Laminated	6 to 20
Very thinly bedded	20 to 60
Thinly bedded	60 to 200
Medium bedded	200 to 600
Thickly bedded	600 to 2000
Very thickly bedded	> 2000

Terms for describing rock and defects are as follows.

Defect Terms			
Joint	JT	Sheared zone	SZ
Bedding Parting	BP	Seam	SM
Foliation	FL	Vein	VN
Cleavage	CL	Drill Lift	DL
Crushed Seam	CS	Handling Break	HB
Fracture Zone	FZ	Drilling Break	DB

The shape and roughness of defects in the rock mass are described using the following terms.

Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulose	UN	Smooth	S
Irregular	IR	Slickensided	SL
Stepped	ST	Polished	POL
Discontinuous	DIS		

The coating or infill associated with defects in the rock mass are described as follows.

Infill and Coating		
Clean	CN	
Stained	SN	
Carbonaceous	Х	
Minerals	MU	Unidentified mineral
	MS	Secondary mineral
	KT	Chlorite
	CA	Calcite
	Fe	Iron Oxide
	Qz	Quartz
Veneer	VNR	Thin or patchy coating
Coating	СТ	Infill up to 1mm

Graphic Symbols Index

APPENDIX

LABORATORY TEST RESULTS

CHAIN OF CUSTODY RECORD

<u>LAB Name</u> Address	Envirolab			-										l		Sta	ntec	2		
Client	Stantec Australia Pty Ltd suite 2 level 2, 22 honey such Newcastle	kle drive NSW 2300]	-	Conta Phone Fax	e e	nbers		0401	972 6	634									
Contact	Nicholas McDonald		-	T	E-mai	1	nic	holas n	- Icdon:	ald@c:	ardno.co	m au					cardno.com.a			
Sampled by	Nicholas McDonald			-		-			(invo	ice to	sapinvoi	ces@s	tantec						ressivity &	
									•						NOTE: Aggressivity = Soil Aggressivity & Resistivity test please			•		
Project Ref:	300304375]	Date I	Results	s Requ	ired	Stan	dard T	AT	_					•	•		
	<u></u>	- <u> </u>	Ma	atrix	<u> </u>			Containe	ers/Pre	serva	tion				-	Analysis	Required			
Laboratory LIMS ID	Client Sample ID	Date Sampled	Soil	Water	Soil Jar (G) Nat. Orange	Purple JAR	Orange Jar	50mL VOA Vial (G) H ₂ SO ₄ Maroon	ЦО	0.2-1.0 litre (G) H ₂ SO4 Maroon	P) Filtered?? Y=Yes, INO3) Red	0.21 (P) NaOH Blue	Other - Zip Lock Bag	Aggressivity		<u>ruaysis</u>				
	BH01 0.3 - 0.5 m	23/05/2023	IXI -			l	<u>- ×</u>							<u> </u>				<u>+</u>	<u> </u>	
2	BH01 1.1 - 1.3 m	23/05/2023	X				İ	·†			·			X					8 U	
3	BH01 SPT 1.5 m	23/05/2023	X	****			<u> </u>	·											sampling	
4	BH01 1.6 - 1.7 m	23/05/2023	X				1	4	1	1		· [······		X			·}····		E	
NR.	BH02 1.3 - 1.5 m	23/05/2023	X				T			 -		+				******			es .	
5	BH02 SPT 1.5 m	23/05/2023	য়ে			******	••••••••••••••••	******	1	1		-					-j		es ter	
6	BH02 SPT 3.0 m	23/05/2023	X			*****		1	+	1		1		***************************************					chilled immediately after /ent and kept < 6 degrees	
7	BH02 SPT 4.5 m	23/05/2023	X	************					1	'		1					-		de la	
<u>ð</u>	BH03 0.05 - 0.15	24/05/2023	X	*****		*****				-				X		********			6 at	
9	BH03 0.2 - 0.3 m	24/05/2023	X	*****			••••••••••••••••••••••••••••••••••••••	1	1	1					·····		- [-	t gi	
10	BH03 SPT 0.5 m	24/05/2023	X				<u> </u>	1	1			+				*********	******		d imme nd kept	
	BH03 0.7 - 0.9 m	24/05/2023	X					1	1	1			X						μË 🚆	
12	BH04 SPT 0.5 m	24/05/2023	X				I						X	X		******	······	-	a g	
13	BH04 SPT 1.5 m	24/05/2023	м						Ī							***********		1	i i i	
14	BH04 SPT 3.0 m	24/05/2023	X				[1				ļ		X		******			event	
	BH04 SPT 4.5 m	24/05/2023	X					I											w l	
16	BH04 SPT 6.0 m	24/05/2023	X			*********	ļ	<u>.</u>]				CD100	OLAB-	12 As	i'v <u>or</u> es de¥ St	
	BH04 SPT 7.5 m	24/05/2023	X	*****				<u> </u>	L			1	X				・ イン Chatsv	vood NSI	V 2067	
ENITE: 10	BH04 SPT 9.0 m	24/05/2023	M					1					X				Ph.	: (02) 991	0 1200	•
	BH02 6.9-7.0m.	1			_			1								<u>100 r</u>	0.3257	67.	4	
ورب / ۷۰ 20 Relinguished by Received by ۲۰۱ ۲۰۱	EMILY W	Signature Signature	εw			ate/Tim ate/Tiπ		5/6/2	106/20 ミ 940	Custo	ody Seals	s Intact े	? / Sa	mples Receive	d Chilled? イ	Time i Receiv Temp: Coolin	Received: 16 Received: 10 ved By: 60 Cool mbien ng: Ice(cepac) ity: Intact/Brok	240 2. 2. 2. 8.	°4 0 0	5

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 325767

Client Details	
Client	Cardno (NSW/ACT) Pty Ltd
Attention	Nicholas McDonald
Address	PO Box 19, St Leonards, NSW, 1590

Sample Details	
Your Reference	<u>300304375</u>
Number of Samples	22 Soil
Date samples received	16/06/2023
Date completed instructions received	16/06/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details			
Date results requested by	23/06/2023		
Date of Issue	23/06/2023		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Diego Bigolin, Inorganics Supervisor <u>Authorised By</u> Nancy Zhang, Laboratory Manager

Page | 1 of 7

Misc Inorg - Soil						
Our Reference		325767-2	325767-4	325767-5	325767-8	325767-12
Your Reference	UNITS	BH01 1.1 - 1.3 m	BH01 1.6 - 1.7 m	BH02 SPT 1.5 m	BH03 0.05 - 0.15	BH04 SPT 0.5 m
Date Sampled		23/05/2023	23/05/2023	23/05/2023	24/05/2023	24/05/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/06/2023	21/06/2023	21/06/2023	21/06/2023	21/06/2023
Date analysed	-	21/06/2023	21/06/2023	21/06/2023	21/06/2023	21/06/2023
pH 1:5 soil:water	pH Units	5.2	5.1	4.4	6.2	4.3
Electrical Conductivity 1:5 soil:water	µS/cm	48	51	79	94	190
Chloride, Cl 1:5 soil:water	mg/kg	<10	10	83	10	50
Sulphate, SO4 1:5 soil:water	mg/kg	51	47	<10	39	260
Resistivity in soil*	ohm m	210	200	2,100	110	54

Misc Inorg - Soil		
Our Reference		325767-14
Your Reference	UNITS	BH04 SPT 3.0 m
Date Sampled		24/05/2023
Type of sample		Soil
Date prepared	-	21/06/2023
Date analysed	-	21/06/2023
pH 1:5 soil:water	pH Units	5.5
Electrical Conductivity 1:5 soil:water	µS/cm	35
Chloride, Cl 1:5 soil:water	mg/kg	10
Sulphate, SO4 1:5 soil:water	mg/kg	35
Resistivity in soil*	ohm m	280

Page | **2 of 7**

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity (non NATA). Resistivity (calculated) may not correlate with results otherwise obtained using Resistivity-Current method, depending on the nature of the soil being analysed.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			21/06/2023	2	21/06/2023	21/06/2023		21/06/2023	
Date analysed	-			21/06/2023	2	21/06/2023	21/06/2023		21/06/2023	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	2	5.2	5.1	2	100	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	2	48	49	2	102	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	<10	<10	0	105	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	51	51	0	100	
Resistivity in soil*	ohm m	1	Inorg-002	<1	2	210	200	5	[NT]	[NT]

Page | **4 of 7**

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Page | **5 of 7**

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Page | 6 of 7

Report Comments

Samples were out of the recommended holding time for this analysis pH/EC in soil.

Report Number:	SC2366-1
Issue Number:	1
Date Issued:	22/06/2023
Client:	Stantec Pty Ltd

Contact:	lan Piper
Project Number:	SC2366
Project Name:	West Gosford Bus Depot
Project Location:	Racecourse Road, West Gosford
Client Reference:	300304375
Work Request:	6144
Sample Number:	M23-6144A
Date Sampled:	01/06/2023
Dates Tested:	02/06/2023 - 16/06/2023
Sampling Method:	Sampled by Client - Tested as Received
	The results apply to the sample as received
Sample Location:	BH02, Depth: 0.4 - 1.3m

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	6		
Method of Compactive Effort	Standard		
Method used to Determine MDD	AS 1289 5.1.1 & 2.1.1		
Method used to Determine Plasticity	vis	sual	
Maximum Dry Density (t/m ³)	1.81		
Optimum Moisture Content (%)	17.0		
Laboratory Density Ratio (%)	99.5		
Laboratory Moisture Ratio (%)	99.5		
Dry Density after Soaking (t/m ³)	1.80		
Field Moisture Content (%)	19.1		
Moisture Content at Placement (%)	16.7		
Moisture Content Top 30mm (%)	18.2		
Moisture Content Rest of Sample (%)	17.4		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	96.0		
Swell (%)	0.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		
Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3	.3.1)	Min	Max

Allemeny Linni (AS1203 5.1.2 & 5.2			IVIAA
Sample History	Oven Dried		
Preparation Method	Dry Sieve		_
Liquid Limit (%)	43		
Plastic Limit (%)	16		
Plasticity Index (%)	27		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
	AS 1289.3.1.2	Min	Max
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (AS1289 3.4.1) Moisture Condition Determined By	AS 1289.3.1.2		Max

QGS Quality Geotechnical Services Pty Ltd 8/34 Alliance Avenue Morisset NSW 2264 Phone: 0475 008 651 Email: steve.waugh@qgslabs.com

Accredited for compliance with ISO/IEC 17025 - Testing

NATA WORLD RECOGNISED

Hound

Approved Signatory: Steve Waugh Managing Director NATA Accredited Laboratory Number: 21234

Report Number:	SC2366-1		
Issue Number:	1		
Date Issued:	22/06/2023		
Client:	Stantec Pty Ltd		

Contact:	lan Piper
Project Number:	SC2366
Project Name:	West Gosford Bus Depot
Project Location:	Racecourse Road, West Gosford
Client Reference:	300304375
Work Request:	6144
Sample Number:	M23-6144B
Date Sampled:	01/06/2023
Dates Tested:	02/06/2023 - 15/06/2023
Sampling Method:	Sampled by Client - Tested as Received
	The results apply to the sample as received
Sample Location:	BH03, Depth: 0.3 - 0.5m

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	35		
Method of Compactive Effort Standard			
Method used to Determine MDD	AS 1289 5.1.1 & 2.1.1		
Method used to Determine Plasticity	vis	ual	
Maximum Dry Density (t/m ³)	1.95		
Optimum Moisture Content (%)	11.5		
Laboratory Density Ratio (%)	100.0		
Laboratory Moisture Ratio (%)	98.5		
Dry Density after Soaking (t/m ³)	1.95		
Field Moisture Content (%)	7.3		
Moisture Content at Placement (%)	11.2		
Moisture Content Top 30mm (%)	12.7		
Moisture Content Rest of Sample (%)	12.2		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	72.0		
Swell (%)	0.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Particle Size Distribution (AS1289 3.6.1)					
Sieve	Passed %	Passing Limits	Retained %	Retained Limits	
13.2 mm	98		2		
9.5 mm	94		4		
6.7 mm	91		3		
4.75 mm	89		2		
2.36 mm	86		3		
1.18 mm	83		3		
0.6 mm	78		5		
0.425 mm	74		4		
0.3 mm	48		25		
0.15 mm	29		19		
0.075 mm	23		7		

QGS Quality Geotechnical Services Pty Ltd 8/34 Alliance Avenue Morisset NSW 2264 Phone: 0475 008 651 Email: steve.waugh@qgslabs.com

Accredited for compliance with ISO/IEC 17025 - Testing

NATA WORLD RECOGNISED

Hound

Approved Signatory: Steve Waugh Managing Director NATA Accredited Laboratory Number: 21234

Report Number: SC2366-1

Report Number:	SC2366-1		
Issue Number:	1		
Date Issued:	22/06/2023		
Client:	Stantec Pty Ltd		

Contact:	lan Piper
Project Number:	SC2366
Project Name:	West Gosford Bus Depot
Project Location:	Racecourse Road, West Gosford
Client Reference:	300304375
Work Request:	6144
Sample Number:	M23-6144C
Date Sampled:	01/06/2023
Dates Tested:	02/06/2023 - 16/06/2023
Sampling Method:	Sampled by Client - Tested as Received
	The results apply to the sample as received
Sample Location:	TP209, Depth: 0.3 - 1.5m

California Bearing Ratio (AS 1289 6.1.1 &	2.1.1)	Min	Max
CBR taken at	5 mm		
CBR %	9		
Method of Compactive Effort	Star	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Method used to Determine Plasticity	vis	ual	
Maximum Dry Density (t/m ³)	1.85		
Optimum Moisture Content (%)	17.5		
Laboratory Density Ratio (%)	100.0		
Laboratory Moisture Ratio (%)	100.5		
Dry Density after Soaking (t/m ³)	1.84		
Field Moisture Content (%)	18.6		
Moisture Content at Placement (%)	17.7		
Moisture Content Top 30mm (%)	19.6		
Moisture Content Rest of Sample (%)	18.3		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	96.0		
Swell (%)	0.0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		
Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3	.3.1)	Min	Max

Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	53		
Plastic Limit (%)	19		
Plasticity Index (%)	34		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By			
Woisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	AS 1289.3.1.2 14.5		

QGS Quality Geotechnical Services Pty Ltd 8/34 Alliance Avenue Morisset NSW 2264 Phone: 0475 008 651 Email: steve.waugh@qgslabs.com

Accredited for compliance with ISO/IEC 17025 - Testing

NATA WORLD RECOGNISED

ta Hargo

Approved Signatory: Steve Waugh Managing Director NATA Accredited Laboratory Number: 21234

Report Number:	SC2366-1
Issue Number:	1
Date Issued:	22/06/2023
Client:	Stantec Pty Ltd

Contact: lan Piper SC2366 **Project Number:** Project Name: West Gosford Bus Depot **Project Location:** Racecourse Road, West Gosford **Client Reference:** 300304375 Work Request: 6144 **Dates Tested:** 02/06/2023 - 15/06/2023 West Gosford Bus Depot Location:

QGS Quality Geotechnical Services Pty Ltd 8/34 Alliance Avenue Morisset NSW 2264 Phone: 0475 008 651 Email: steve.waugh@qgslabs.com

Accredited for compliance with ISO/IEC 17025 - Testing

NATA WORLD RECOGNISED

Approved Signatory: Steve Waugh Managing Director NATA Accredited Laboratory Number: 21234

Nain

Shrink Swell Index AS 1289 7.1.1 & 2.1.1				
Sample Number	M23-6144A	M23-6144C		
Date Sampled	01/06/2023	01/06/2023		
Date Tested	15/06/2023	15/06/2023		
Material Source	insitu	insitu		
Sample Location	BH02 (0.4 - 1.3m)	TP209 (0.3 - 1.5m)		
Inert Material Estimate (%)	0	0		
Pocket Penetrometer before (kPa)	**	**		
Pocket Penetrometer after (kPa)	**	**		
Shrinkage Moisture Content (%)	18.2	16.8		
Shrinkage (%)	3.0	2.0		
Swell Moisture Content Before (%)	18.6	17.2		
Swell Moisture Content After (%)	19.9	21.0		
Swell (%)	-0.0	-0.1		
Shrink Swell Index Iss (%)	1.7	1.1		
Visual Description	Refer to Client logs	Refer to Client logs		
Cracking	SC	UC		
Crumbling	No	No		
Remarks	Sample remoulded at Field Moisture with 100% Standard compactive effort	Sample remoulded at Field Moisture with 100% Standard compactive effort		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

POINT LOAD STRENGTH TEST RESULTS CLIENT: Busways Pty Ltd

CLIENT: PROJECT:

LOCATION:

Geotechnical Investigation Racecourse Rd, West Gosford NSW

DATE: PROJECT No: 300304375 CLIENT REF:

					(a, 1100) 000										
Bore	Depth (m)	Test Number	Sample length (mm)	Sample diameter (mm)	Minimum cross- sectional area of plane (mm)	Separation at failure (mm)	Orientation A = axial D = diametrical I = irregular AS = Anisotropic rock	Load at failure (kN)	Point load strength, $I_{\rm s}$	Point load index, l _{s(50)}	Rock type & structure	Moisture content & storage history	Failure mechanism M = massive B = bedded J = jointed	Strength	
BH03	2.23	1	90.0	52.0	2124	50.5	D	0.32	0.1	0.1		Moist, core tray	b	Very Low	
BH03	2.25	2	37.0	52.0	1924	36.0	A	0.34	0.1	0.1		Moist, core tray	b	Very Low	
BH03	2.50	3	180.0	52.0	2124	49.0	D	0.50	0.2	0.2		Moist, core tray	b	Very Low	
BH03	2.52	4	45.0	52.0	2340	43.0	А	0.44	0.1	0.2		Moist, core tray	b	Very Low	
BH03	2.95	5	250.0	52.0	2124	49.5	D	0.57	0.2	0.2		Moist, core tray	b	Very Low	
BH03	2.97	6	50.0	52.0	2600	49.0	А	0.62	0.2	0.2		Moist, core tray	b	Very Low	
BH03	3.35	7	140.0	52.0	2124	25.0	D	0.11	0.2	0.1		Moist, core tray	b	Very Low	
BH03	3.37	8	28.0	52.0	1456	17.5	А	0.06	0.03	0.03		Moist, core tray	b	Extremely Low	
BH03	4.42	9	47.0	52.0	2124	43.5	D	0.26	0.1	0.1		Moist, core tray	b	Very Low	
BH03	4.44	10	18.0	52.0	936	16.7	А	0.17	0.1	0.1		Moist, core tray	b	Very Low	
BH03	4.35	11	180.0	52.0	2124	49.0	D	1.31	0.5	0.5		Moist, core tray	b	Medium	
BH03	4.37	12	37.0	52.0	1924	38.0	A	0.89	0.4	0.4		Moist, core tray	b	Medium	
BH03	5.77	13	90.0	52.0	2124	50.0	D	0.45	0.2	0.2		Moist, core tray	b	Very Low	
BH03	5.79	14	39.0	52.0	2028	37.0	А	0.22	0.09	0.09		Moist, core tray	b	Extremely Low	
BH03	6.22	15	52.0	52.0	2124	49.5	D	0.93	0.4	0.4		Moist, core tray	b	Medium	
BH03	6.24	16	22.0	52.0	1144	24.0	A	0.90	0.6	0.5		Moist, core tray	b	Medium	
BH03	6.84	17	82.0	52.0	2124	49.5	D	0.74	0.3	0.3		Moist, core tray	b	Medium	
BH03	6.82	18	45.0	52.0	2340	43.0	А	0.67	0.2	0.2		Moist, core tray	b	Very Low	
BH03	7.06	19	57.0	52.0	2124	48.0	D	0.05	0.02	0.02		Moist, core tray	j	Extremely Low	
BH03	7.25	20	35.0	52.0	1820	32.5	A	1.19	0.5	0.5		Moist, core tray	b	Medium	

POINT LOAD STRENGTH TEST RESULTS CLIENT: Busways Pty Ltd

CLIENT:	
PROJECT:	

LOCATION:

Geotechnical Investigation Racecourse Rd, West Gosford NSW

DATE: PROJECT No: 300304375 CLIENT REF:

			I 1											
Bore	Depth (m)	Test Number	Sample length (mm)	Sample diameter (mm)	Minimum cross- sectional area of plane (mm)	Separation at failure (mm)	Orientation A = axial D = diametrical I = irregular AS = Anisotropic rock	Load at failure (kN)	Point load strength, I _s	Point load index, l _{s(50)}	Rock type & structure	Moisture content & storage history	Failure mechanism M = massive B = bedded J = jointed	Strength
BH01	2.81	1	90.0	52.0	2124	48.5	D	0.36	0.2	0.2		Moist, core tray	j	Very Low
BH01	-			52.0	0		A					Moist, core tray	b	
BH01	3.90	2	126.0	52.0	2124	51.0	D	0.89	0.3	0.3		Moist, core tray	b	Medium
BH01	3.88	3	42.0	52.0	2184	41.0	А	1.09	0.4	0.4		Moist, core tray	b	Medium
BH01	4.26	4	52.0	52.0	2124	48.5	D	0.59	0.3	0.2		Moist, core tray	b	Very Low
BH01	4.28	5	18.0	52.0	936	17.5	A	0.48	0.4	0.3		Moist, core tray	b	Medium
BH01	4.58	6	82.0	52.0	2124	50.0	D	0.68	0.3	0.3		Moist, core tray	b	Very Low
BH01	4.60	7	42.0	52.0	2184	39.5	А	1.30	0.5	0.5		Moist, core tray	b	Medium
BH01	5.04	8	65.0	52.0	2124	50.0	D	0.89	0.4	0.4		Moist, core tray	b	Medium
BH01	5.06	9	27.0	52.0	1404	25.5	A	0.81	0.5	0.4		Moist, core tray	b	Medium
BH01	5.91	10	170.0	52.0	2124	49.0	D	1.79	0.7	0.7		Moist, core tray	b	Medium
BH01	5.93	11	40.0	52.0	2080	37.0	A	1.81	0.7	0.7		Moist, core tray	b	Medium
BH01	6.30	12	145.0	52.0	2124	49.5	D	2.19	0.9	0.9		Moist, core tray	b	Medium
BH01	6.32	13	47.0	52.0	2444	45.5	A	1.88	0.6	0.6		Moist, core tray	b	Medium
BH01	7.95	14	60.0	52.0	2124	48.0	D	0.31	0.1	0.1		Moist, core tray	b	Very Low
BH01	7.97	15	20.0	52.0	1040	17.0	A	0.21	0.2	0.1		Moist, core tray	b	Very Low
BH01	8.17	16	85.0	52.0	2124	47.0	D	0.29	0.1	0.1		Moist, core tray	b	Very Low
BH01	8.15	17	44.0	52.0	2288	41.0	A	0.35	0.1	0.1		Moist, core tray	b	Very Low
BH01	8.46	18	110.0	52.0	2124	47.5	D	0.67	0.3	0.3		Moist, core tray	b	Very Low
BH01	8.48	19	37.0	52.0	1924	33.0	A	0.40	0.2	0.2		Moist, core tray	b	Very Low
BH01				52.0	2124		D		0.3	0.3		Moist, core tray	b	Medium

Calculated by: NM Checked by: GA

APPENDIX

HILLSIDE CONSTRUCTION PRACTICE

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

HILLSIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.

Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

EXAMPLES OF **POOR** HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

•	GeoGuide LR1		•	GeoGuide LR6 - Ret	5
•	GeoGuide LR2		•	GeoGuide LR7 - Lan	
•		- Landslides in Soil - Landslides in Rock	•	GeoGuide LR9 - Em	uent & Surface Water Disposal
•		- Water & Drainage		GeoGuide LR10 - Coa GeoGuide LR11 - Rec	
•	GeoGuide LK5	- Waler & Drainage	•	GeoGuide LKTT - Ket	Join Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.